scholarly journals Experimental Investigation and Analysis of Tensile Strength of Dissimilar Friction Welded Joints of Aluminium 6061 and Mild Steel

Nowadays, the joining process plays a vital role in every field of engineering application. Various similar and dissimilar materials are joined by many joining processes to a formed complex component. In all joining processes, welding is a very popular and effective joining process that gives permanent joint. In this process material to be joined is under influence of heat which is produced with aid of external (flame) and internal (friction) mediums. Further, there are types of welding process called friction welding which is solid-state welding, in that process friction had developed between materials having relative motion thus sufficient heat also produced, and welding is performed in solid-state. In recent time’s friction welding is widely used in automobile, aeronautical, structural, marine, etc areas due to its flexibility demand for various materials. In this research work, the aluminium 6061 and mild steel are joined by friction welding by varying the rotating speed of lathe chuck, friction time, burn-off length, and the joint is examined by a tensile test to check its strength. Taguchi’s orthogonal array was used to design the experiment and at the end, the ANOVA test is carried out for the optimization of process parameters.

2015 ◽  
Vol 766-767 ◽  
pp. 745-750 ◽  
Author(s):  
K. Umanath ◽  
K. Palanikumar

The rotary type continuous friction welding process is a solid state joining process by mechanically. It produces a joint in the forging pressure contact with rotating and motionless workpiece. The solid state joining process it produces welds with reduced distortion and improved mechanical properties. The austenitic stainless steels are widely used in shipbuilding field, nuclear field and automobile field because of their special mechanical and metallurgical properties. In this work, friction welding of austenitic stainless steel rods of 10mm diameter was investigated with an aim to understand the influence of friction welding process parameters. The details of microstructure analysis using optical microscopy are discussed.


Author(s):  
Gurunath Shinde ◽  
Prakash Dabeer

<p>Friction welding is a solid state welding processes in which the weld is obtained by the heat generated due to forging and friction. Now a day’s eco-friendly joining of dissimilar materials is the need of the industries. The advantages of friction welding process are reduction in production time and cost saving. Friction welding is classified into two types. One type is Inertia drive friction welding and the other is Continuous drive friction welding. In continuous drive friction welding one of the work pieces is held stationary while the other is held for a certain rotating speed. The two work pieces are brought together under certain friction pressure for a<br />certain period of time known as friction time. Then, the rotation is stopped and upset pressure is applied for a certain upset time. Then, the spindle is disengaged and the component is unloaded. In Inertia drive friction welding one part is held stationary while the other is clamped in the chuck which is attached to the flywheel. The flywheel and chuck is rotated for a certain seed to store a predetermined energy. In this paper, review of friction welding on different materials and their weld ability has been discussed in brief.</p>


Author(s):  
Mohd Ridha Muhamad ◽  
Sufian Raja ◽  
Mohd Fadzil Jamaludin ◽  
Farazila Yusof ◽  
Yoshiaki Morisada ◽  
...  

Abstract Dissimilar materials joining between AZ31 magnesium alloy and SPHC mild steel with Al-Mg powder additives were successfully produced by friction stir welding process. Al-Mg powder additives were set in a gap between AZ31 and SPHC specimen's butt prior to welding. The experiments were performed for different weight percentages of Al-Mg powder additives at welding speeds of 25 mm/min, 50 mm/min and 100 mm/min with a constant tool rotational speed of 500 rpm. The effect of powder additives and welding speed on tensile strength, microhardness, characterization across welding interface and fracture morphology were investigated. Tensile test results showed significant enhancement of tensile strength of 150 MPa for 10% Al and Mg (balance) powder additives welded joint as compared to the tensile strength of 125 MPa obtained for welded joint without powder additives. The loss of aluminium in the alloy is compensated by Al-Mg powder addition during welding under a suitable heat input condition identified by varying welding speeds. Microstructural analysis revealed that the Al-Mg powder was well mixed and dispersed at the interface of the joint at a welding speed of 50 mm/min. Intermetallic compound detected in the welding interface contributed to the welding strength.


Author(s):  
Mohammad Mehdi Kasaei ◽  
Lucas FM da Silva

This research work presents a new joining process based on the hemming process for attaching sheets made from dissimilar materials with very different mechanical properties. The process is termed ‘hole hemming’ and consists in producing a mechanical interlock between pre-drilled holes which can be made anywhere on the sheets. The process is carried out in a two-stage operation including flanging the hole of an outer sheet and bending the flange over the hole of an inner sheet. First, the joining stages and the required tools are designed. Then, the joining of DP780 steel and AA6061-T6 aluminium alloy sheets, which are applied to manufacture lightweight structures in the automotive industries, is investigated using finite element analysis. Results show that the hole hemming process is able to successfully join these materials without fracture. The hole-hemmed joint withstood the maximum forces of 2.5 and 0.5 kN in single-lap shear and peel tests, respectively, and failed with hole bearing mode which is known as a gradual failure mode. The results demonstrate the applicability of the hole hemming process for joining dissimilar materials.


2016 ◽  
Vol 35 (3) ◽  
pp. 235-241
Author(s):  
Sare Celik ◽  
Aslan Deniz Karaoglan ◽  
Ismail Ersozlu

AbstractThe joining of dissimilar metals is one of the most essential necessities of industries. Manufacturing by the joint of alloy steel and normal carbon steel is used in production, because it decreases raw material cost. The friction welding process parameters such as friction pressure, friction time, upset pressure, upset time and rotating speed play the major roles in determining the strength and microstructure of the joints. In this study, response surface methodology (RSM), which is a well-known design of experiments approach, is used for modeling the mathematical relation between the responses (tensile strength and maximum temperature), and the friction welding parameters with minimum number of experiments. The results show that RSM is an effective method for this type of problems for developing models and prediction.


2016 ◽  
Vol 254 ◽  
pp. 261-266
Author(s):  
Bogdan Radu ◽  
Cosmin Codrean ◽  
Radu Cojocaru ◽  
Cristian Ciucă

Friction Stir Welding (FSW) is an innovative solid state welding process, relatively new in industry, which allow welding of two or more materials which have very different properties, particularly thermal properties as fusion temperature, thermal expansion coefficient, specific heat and thermal conduction and have a predisposition to form intermetallic brittle phases, neither one of the components to be weld reach to the melting point. Being a solid state welding process temperature field is very important for the quality of the welded joint, and a lot of researches focused on this topic. This paper presents some results in modeling and estimation of thermal field developed during FSW of dissimilar joints, using Finite Element Analysis. Numerical modeling of thermal field allows engineers to predict, in advance, the evolution of temperature and to estimate the behavior of the welded materials during the welding process. This will reduce significantly the time and number of experiments that have to be carried out, in the process of establishing a good FSW technology, as well as reducing significantly the cost of the tests.


2011 ◽  
Vol 383-390 ◽  
pp. 877-881 ◽  
Author(s):  
S. Muthukumaran ◽  
C. Vijaya Kumar ◽  
S. Senthil Kumaran ◽  
A. Pradeep

Joining of dissimilar materials is of increasing interest for a wide range of industrial applications like nuclear, thermal power. The automotive industry, in particular, views dissimilar materials joining as a gateway for the implementation of lightweight materials. Friction welding of tube to tube plate using an external tool is an innovative friction welding process and is capable of producing high quality leak proof weld joints. In the present study, friction welding of steel tube to commercial aluminum tube plate using an external tool with and without tube projection have been performed. The joints were evaluated by mechanical testing and metallurgical analysis. The results of bonding interface hardness and joint strength reveal that steel tube with projection are better than the steel tube without projection.


2018 ◽  
Vol 1146 ◽  
pp. 38-43
Author(s):  
Ana Boşneag ◽  
Marius Adrian Constantin ◽  
Eduard Niţu ◽  
Cristian Ciucă

Friction Stir Welding, abbreviated FSW is an innovative joining process. The FSW is a solid-state welding process with a lot of advantages comparing to the traditional arc welding, such as the following: it uses a non-consumable tool, it results of good mechanical properties, it can use dissimilar materials and it have a low environmental impact. First of all, the FSW process was developed to join similar aluminum plates, and now, the technology was developed and the FSW process is used to weld large types of materials, similar or dissimilar. In this paper it is presented an experimental study and the results of it, which includes the welding of three dissimilar aluminum alloy, with different chemical and mechanical properties. This three materials are: AA2024, AA6061 and AA7075. The welding joints and the welding process were analyzed considering: process temperature, micro-hardness, macrostructure and microstructure.


Sign in / Sign up

Export Citation Format

Share Document