scholarly journals The Structural Performance Analysis of Base-Isolated Hospital Buildings with Analysis Modal (Case Study: General Hospital in Labuhan Batu Utara Regency Area)

2019 ◽  
Vol 1 (2) ◽  
pp. 63-78
Author(s):  
Muhammad Irwansyah ◽  
Johannes Tarigan ◽  
Zulfazly Putra

The development of earthquake analysis towards structures is required to prevent damages and loss in buildings due to earthquakes. The base isolation system is a simple design approach for earthquake-resistant buildings to protect the structures and components from the risk of earthquake damages by using the concept of reducing earthquake forces. This research aims to analyze the performance of a general hospital building in Labura Regency area in order to know the safety of the building in terms of period, frequency, base shear force, displacement and earthquake force, used the base isolators and without the base isolators. The method used is response-spectrum dynamic analysis by ETABS v2016 program. From the calculation of structural analysis, the application of base isolation is able to build up the period of the structure, therefore, the maximum acceleration of earthquakes can be reduced at certain period. There is an average increase by 48.21% of the structural period compared to non-isolated base structure, and the frequency that occurs in structures using base isolators is smaller than without base isolators. The friction force obtained is smaller compared to the structures without dampers. Base-isolated building structures observed have bigger displacement than non-base isolated structures. The average rise of the building displacement is 27.14% at x and 2.74% at y directions. In base-isolated structures, earthquake forces are reduced averagely by 57.51% at x and 82.73% at y directions. The analysis of structural performance, General Hospital in Labura Regency is categorized to Immediate Occupancy (IO) in which the building structures are safe with no significant risk of fatalities due to structural failures, there are no any significant damages and the building can be used and functioned/operated again immediately.

Author(s):  
Agyanata Tua Munthe ◽  
Abdul Gafur

The earthquake that often hit Indonesia caused thousands of lives and caused damage to buildings. These earthquakes often occur because Indonesia is in two regions, namely the Pacific earthquake path (Circum Pacific Earthquake Belt) and the Asian earthquake lane (Trans Asiatic Earthquake Belt). Earthquake disasters cause damage to building structures. When an earthquake occurs, it is expected that the building can accept earthquake force at a certain level without significant damage to its structure. In general, earthquake analysis is divided into two major parts, namely static earthquake analysis and dynamic earthquake analysis. In buildings that are very high, irregular, multilevel, and buildings that require enormous accuracy are used dynamic analysis planning, which consists of a variety of spectral response analysis and dynamic time response dynamic analysis. This study aims to determine the building's security in terms of displacement, drift, and base shear. The method used is a dynamic analysis of the response spectrum using the ETABS program. The maximum total drift in the X direction is 0.0200475 m and in the Y direction is 0.020405 m, so the building is safe against ultimate boundary performance (0.02h) and service boundary performance {(0.03 / R) x h}. So that the displacement in the building does not exceed the maximum displacement, the building is safe from earthquake plans.


2020 ◽  
Vol 2 (2) ◽  
pp. 48-57
Author(s):  
Agyanata Tua Munthe ◽  
Abdul Gafur

The earthquake that often hit Indonesia caused thousands of lives and caused damage to buildings. These earthquakes often occur because Indonesia is in two regions, namely the Pacific earthquake path (Circum Pacific Earthquake Belt) and the Asian earthquake lane (Trans Asiatic Earthquake Belt). Earthquake disasters cause damage to building structures. When an earthquake occurs, it is expected that the building can accept earthquake force at a certain level without significant damage to its structure. In general, earthquake analysis is divided into two major parts, namely static earthquake analysis and dynamic earthquake analysis. In buildings that are very high, irregular, multilevel, and buildings that require enormous accuracy are used dynamic analysis planning, which consists of a variety of spectral response analysis and dynamic time response dynamic analysis. This study aims to determine the building's security in terms of displacement, drift, and base shear. The method used is a dynamic analysis of the response spectrum using the ETABS program. The maximum total drift in the X direction is 0.0200475 m and in the Y direction is 0.020405 m, so the building is safe against ultimate boundary performance (0.02h) and service boundary performance {(0.03 / R) x h}. So that the displacement in the building does not exceed the maximum displacement, the building is safe from earthquake plans.


Author(s):  
Dion Marriott

This paper discusses the application of the Structural Performance factor (SP) within a Direct Displacement-Based Design framework (Direct-DBD). As stated within the New Zealand loadings standard, NZS1170.5:2004 [1], the SP factor is a base shear multiplier (reduction factor) for ductile structures, i.e. as the design ductility increases, the SP factor reduces. The SP factor is intended to acknowledge the better-than-expected structural behaviour of ductile systems (both strength, and ductility capacity) by accounting for attributes of response that designers are unable to reliably estimate. The SP factor also recognizes the less dependable seismic performance of non-ductile structures, by permitting less of a reduction (a larger SP factor) for non-ductile structures. Within a traditional force-based design framework the SP factor can be applied to either the design response spectrum (a seismic hazard/demand multiplier), or as a base shear multiplier at the end of design (structural capacity multiplier) – either of these two approaches will yield an identical design in terms of the required design base shear and computed ULS displacement/drift demands. However, these two approaches yield very different outcomes within a Direct-DBD framework – in particular, if SP is applied to the seismic demand, the design base shear is effectively multiplied by (SP)2 (i.e. a two-fold reduction). This paper presents a “DBD-corrected” SP factor to be applied to the design response spectrum in Direct-DBD in order to achieve the intent of the SP factor as it applies to force-based design. The proposed DBD-corrected SP factor is attractive in that it is identical to the SP relationship applied to the elastic site hazard spectrum C(T) for numerical integration time history method of analysis within NZS 1170.5:2004 [1], SP,DDBD = (1+SP)/2.


Base isolation is an effective way to protect large structures from earthquake damage. It is a costly approach, as the entire structure must be supported on elastomeric or sliding bearings. Viscous dampers distributed throughout an otherwise conventional structure can achieve the same result at a significantly lower cost. Dampers are used to resist lateral forces coming on the structure. Dampers are the energy dissipating devices which also resist displacement of Reinforced Concrete (RC) buildings during an earthquake. These dampers help the structure to reduce buckling of columns thereby increasing the stiffness of the structure. During earthquakes, multi-storeyed buildings get damaged and as a result, large deformation occurs. Dampers reduce vibration and deformation of structural elements during an earthquake. Retrofitting buildings with fluid viscous dampers (FVDs) can improve Interstorey drifts and floor accelerations. In the present study, an RC framed building is modelled and analysed under Southern Sumatra and Chile earthquakes to evaluate the performance of the structure and its elements with and without energy dissipators. For the study, a model (G+19) with and without energy dissipators is modelled in ETABS. The seismic force is applied based on the time history data of the models pertaining to Southern Sumatra and Chile Earthquake. Response Spectrum analysis has been carried out to find the lateral displacements, storey shear and Base shear for the model with and without dampers. The lateral displacement, storey drift, storey shear and Base shear are found to less for the model with Linear FVDs when compared to the model with Non-Linear FVDs and without FVDs.


Author(s):  
C. S. Tsai ◽  
Tsu-Cheng Chiang ◽  
Bo-Jen Chen

Base isolation technologies have been proven to be very efficient in protecting structures from seismic hazards during experimental and theoretical studies. In recent years, there have been more and more engineering applications using base isolators to upgrade the seismic resistibility of structures. Optimum design of the base isolator can lessen the undesirable seismic hazard with the most efficiency. Hence, tracing the nonlinear behavior of the base isolator with good accuracy is important in the engineering profession. In order to predict the nonlinear behavior of base isolated structures precisely, hundreds even thousands of degrees-of-freedom and iterative algorithm are required for nonlinear time history analysis. In view of this, a simple and feasible exact formulation without any iteration has been proposed in this study to calculate the seismic responses of structures with base isolators. Comparison between the experimental results from shaking table tests conducted at National Center for Research on Earthquake Engineering in Taiwan and the analytical results show that the proposed method can accurately simulate the seismic behavior of base isolated structures with elastomeric bearings. Hence, the proposed concept can be used as a reliable tool for engineering professions for preliminary design.


2020 ◽  
Vol 2 (1) ◽  
pp. 59-68
Author(s):  
Ummi Khoirunnissa ◽  
Rinawati Djakfar ◽  
Yanuar Setiawan

ABSTRACTIndonesia is a country with geographical location where 4 large tectonic plates meet. Therefore, if a collision or frictionhits the country, it is vulnerable to earthquakes. This condition makes the buildings more vulnerable to earthquakes. The effect of earthquake force and the performance of the resulting structure will be different if the same load is applied to a regular building and to an irregular building. The method to calculate the effect of the earthquake on the analysis of high-rise building structures in this study used dynamic analysis with spectrum response referred to SNI 03-1726-2012 and 2013 ETABS software program assistance (13.1.1 build 1035). This study aimed to compare the performance of the structure based on the deflection value and the story drift limits in regular and irregular buildings. In this study, the response of structural performance on three building models was calculated with variations in horizontal structure irregularity and then the results were compared. In this research, the biggest deflection was resulted on the re-entrant corner irregularity model C in the x-direction of 7,219 mm and the y-direction of 4,244 mm. Based on the deflection value in the x-direction and y-direction on all building models, the story drift due to the effect of the earthquake plan was less than


Author(s):  
Sudhir Kumar

Abstract: Many past earthquake studies show that during strong vibrations, the adjacent building structures which are closely spaced to each other are vulnerable to severe damage when the adjacent buildings are not at an adequate distance to accommodate their relative displacements. The primary goal of this research is to find out the minimum separation gap between buildings of varying height at the same floor-to-floor height level. SAP 2000 software is used to analyze the structural behavior of building during the earthquake.Three building models are taken for the study, one is six floors (G+6) and another two are nine floors (G+9), and twelve floors (G+12) respectively. Six floors (G+6)& twelve floors (G+12) structures have the same floor to floor height and plan and same beam and column size (equal stiffness) and G+9 buildings have floor to floor height are same but different beam and column sizes (different stiffness). The linear dynamic (RSA) analysis method is used to calculate the response (Displacement, frequency at fundamental time, Base Shear) of the structure at different floors levels. Response (top story displacements) calculated from the response spectrum is compared with the provisions of seismic gap per story height given in IS 4326: 2005.


2011 ◽  
Vol 22 (16) ◽  
pp. 1913-1927 ◽  
Author(s):  
Sang-Hyun Lee ◽  
Kyung-Jo Youn ◽  
Kyung-Won Min

In this study, a decentralized algorithm for operating a semiactive MR damper was presented. The frictional force of the MR damper was determined based on the assumed shape functions using the displacement and velocity of the damper piston itself. The seismic response control performance of the MR damper was numerically and experimentally evaluated and compared to that of the passively or semiactively operated MR damper. The results from numerical analysis of SDOF system indicated that passively operated MR damper to have an optimal frictional force less than about 30% of the base shear force provided the smallest displacement response spectrum over all the periods. The proposed MR damper showed the better performance in reducing the absolute acceleration with the larger frictional force than the passive one. Also, the results from a three-storey benchmark building indicated that the proposed decentralized MR damper provided control performance equivalent to or better than the performance shown by the semiactive MR damper using a centralized LQR algorithm. Finally, the effectiveness of the proposed MR damper was verified through experimental tests of a full-scale five-storey steel structure with the MR dampers.


Author(s):  
P. R. Boardman ◽  
B. J. Wood ◽  
A. J. Carr

This paper describes the design and construction of a twelve storey office building which has base isolators (i.e. energy dissipators) and external cross bracing to resist lateral loads. The computer analysis techniques used are described and some comparisons are made with non-base isolated structures. The system shows a practical method of using base isolation and energy dissipation techniques in a multi-storey structure. The construction of the building has proved the system to be advantageous in terms of both cost and construction time.


2011 ◽  
Vol 255-260 ◽  
pp. 2568-2572
Author(s):  
Hai Qing Liu ◽  
Xiao Guo ◽  
Hao Wang

This paper expounded the basic principle of the base-isolated structures. Established the equations of motion of single particle and multi-particle base isolation structural system. Adopted multi-layer and high-level framework groups, added laminated rubber bearings in the bottom respectively, input EL Centro seismic waves, and then the modal, time-history, base shear are compared and analyzed. By comparing the results obtained: base-isolated structure used in high-rise building can decrease a certain degree of the seismic response, in the multi-layer building the effect was more apparent. It also confirmed that the application of base isolation on multi-layer and high-level framework in the existing conditions still had some limitations.


Sign in / Sign up

Export Citation Format

Share Document