scholarly journals Detection of Microaneurysms Using Grey Wolf Optimization for Early Diagnosis of Diabetic Retinopathy

2020 ◽  
Vol 13 (6) ◽  
pp. 208-218
Author(s):  
Manohar Pundikal ◽  
◽  
Mallikarjun Holi ◽  

The diabetic retinopathy is the leading cause of blindness worldwide, so early detection of diabetic retinopathy is necessary to reduce eye-related diseases. The accurate identification of microaneurysms is crucial for the detection of diabetic retinopathy, because it appears as the first sign of the disease. In this study, a new model is proposed to detect microaneurysms from the retinal images for early diagnosis of diabetic retinopathy. At first, the fundus images are collected from e-ophtha microaneurysms and DiaretDB1 datasets. Next, image pre-processing is accomplished using image normalization, low light image enhancement, gradient weighting and shade correction. The pre-processing methods significantly brighten the contrast of the fundus images for better visual quality and extract the hidden details of the dark conditions. In addition, Hessian based filter and Otsu threshold are used to extract the foreground objects like microaneurysms from the enhanced fundus images. At last, Grey Wolf Optimization (GWO) is used to predict the correctness of segmented microaneurysms candidates. The experimental results have revealed that the proposed model enhanced the microaneurysms detection up to 0.06-0.30 f-score value compared to the other existing models local convergence index features and local features with k-nearest neighbor. In addition, the proposed model has achieved 85.72% and 86.16% of accuracy respectively on e-ophtha microaneurysms and DiaretDB1 datasets.

Author(s):  
Irfan Ullah Khan ◽  
Nida Aslam ◽  
Malak Aljabri ◽  
Sumayh S. Aljameel ◽  
Mariam Moataz Aly Kamaleldin ◽  
...  

The COVID-19 outbreak is currently one of the biggest challenges facing countries around the world. Millions of people have lost their lives due to COVID-19. Therefore, the accurate early detection and identification of severe COVID-19 cases can reduce the mortality rate and the likelihood of further complications. Machine Learning (ML) and Deep Learning (DL) models have been shown to be effective in the detection and diagnosis of several diseases, including COVID-19. This study used ML algorithms, such as Decision Tree (DT), Logistic Regression (LR), Random Forest (RF), Extreme Gradient Boosting (XGBoost), and K-Nearest Neighbor (KNN) and DL model (containing six layers with ReLU and output layer with sigmoid activation), to predict the mortality rate in COVID-19 cases. Models were trained using confirmed COVID-19 patients from 146 countries. Comparative analysis was performed among ML and DL models using a reduced feature set. The best results were achieved using the proposed DL model, with an accuracy of 0.97. Experimental results reveal the significance of the proposed model over the baseline study in the literature with the reduced feature set.


Author(s):  
Jenicka S.

Texture feature is a decisive factor in pattern classification problems because texture features are not deduced from the intensity of current pixel but from the grey level intensity variations of current pixel with its neighbors. In this chapter, a new texture model called multivariate binary threshold pattern (MBTP) has been proposed with five discrete levels such as -9, -1, 0, 1, and 9 characterizing the grey level intensity variations of the center pixel with its neighbors in the local neighborhood of each band in a multispectral image. Texture-based classification has been performed with the proposed model using fuzzy k-nearest neighbor (fuzzy k-NN) algorithm on IRS-P6, LISS-IV data, and the results have been evaluated based on confusion matrix, classification accuracy, and Kappa statistics. From the experiments, it is found that the proposed model outperforms other chosen existing texture models.


Author(s):  
Monish N

In recent years law enforcement have improved by taking better strategies, computer aided technology, efficient use of resource, etc. As a result of these over the couple of years there has been a steep decline in crime rate in the US (United States). Law enforcement have turned to data science for insights (ranging from reports, corrective analysis and behavior modelling). There has been an overall drop in crime rates in Chicago in recent years. In fact, these rates are at the lowest when compared to the previous decades. This paper uses the criminal dataset found at “data.cityofchicago.org/Public-Safety/Crimes-2001-to-present/ijzp-q8t2” to describe historical trends, insights, etc. in Chicago from 1965 to 2018 and not to assign any casual interpretation of the vanguards of crime rates during this period. Here K-Nearest Neighbor (KNN) classification is used for training and crime predication. Discussions on future investigation can also be found. The proposed model has an accuracy of 83.2%.


Author(s):  
Tssehay Admassu Assegie

<span>In this study, the author proposed k-nearest neighbor (KNN) based heart disease prediction model. The author conducted an experiment to evaluate the performance of the proposed model. Moreover, the result of the experimental evaluation of the predictive performance of the proposed model is analyzed. To conduct the study, the author obtained heart disease data from Kaggle machine learning data repository. The dataset consists of 1025 observations of which 499 or 48.68% is heart disease negative and 526 or 51.32% is heart disease positive. Finally, the performance of KNN algorithm is analyzed on the test set. The result of performance analysis on the experimental results on the Kaggle heart disease data repository shows that the accuracy of the KNN is 91.99%</span>


Author(s):  
Shaziya Banu S ◽  
Ravindra S

<p>Diabetic Retinopathy (DR) is a related malady with diabetes and primary driver of sightlessness in diabetic patients. Epidemiological overview categorizes DR among four significant reasons for sight impedance. DR is a microvascular entanglement in which meager retinal veins may blast, bringing about vision misfortune. In this condition veins in retina swells and may blast in severe extreme condition. Operative medication is timely discovery by steady screenings that is by emphasizing the determination of retinal images using appropriate image processing techniques such as, Preprocessing of retinal image, image segmentation using sobel edge detector, local features extraction like mean, standard deviation, variance, Entropy, histogram values and so on. For classification of retina, system uses K-Nearest Neighbor (KNN) classifier. By adopting this approach, The classification of normal and abnormal images of retina is easy and will reduce the number of reviews for the ophthalmologists. Developing a method to automate functionality of retinal examination helps doctor to identify patient’s condition on disease. So that they can medicate the disease accordingly.</p>


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Xu Bao ◽  
Yanqiu Li ◽  
Jianmin Li ◽  
Rui Shi ◽  
Xin Ding

In this study, a hybrid method combining extreme learning machine (ELM) and particle swarm optimization (PSO) is proposed to forecast train arrival delays that can be used for later delay management and timetable optimization. First, nine characteristics (e.g., buffer time, the train number, and station code) associated with train arrival delays are chosen and analyzed using extra trees classifier. Next, an ELM with one hidden layer is developed to predict train arrival delays by considering these characteristics mentioned before as input features. Furthermore, the PSO algorithm is chosen to optimize the hyperparameter of the ELM compared to Bayesian optimization and genetic algorithm solving the arduousness problem of manual regulating. Finally, a case is studied to confirm the advantage of the proposed model. Contrasted to four baseline models (k-nearest neighbor, categorical boosting, Lasso, and gradient boosting decision tree) across different metrics, the proposed model is demonstrated to be proficient and achieve the highest prediction accuracy. In addition, through a detailed analysis of the prediction error, it is found that our model possesses good robustness and correctness.


Pharmaceutics ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 122
Author(s):  
Phasit Charoenkwan ◽  
Wararat Chiangjong ◽  
Chanin Nantasenamat ◽  
Mohammad Ali Moni ◽  
Pietro Lio’ ◽  
...  

Tumor-homing peptides (THPs) are small peptides that can recognize and bind cancer cells specifically. To gain a better understanding of THPs’ functional mechanisms, the accurate identification and characterization of THPs is required. Although some computational methods for in silico THP identification have been proposed, a major drawback is their lack of model interpretability. In this study, we propose a new, simple and easily interpretable computational approach (called SCMTHP) for identifying and analyzing tumor-homing activities of peptides via the use of a scoring card method (SCM). To improve the predictability and interpretability of our predictor, we generated propensity scores of 20 amino acids as THPs. Finally, informative physicochemical properties were used for providing insights on characteristics giving rise to the bioactivity of THPs via the use of SCMTHP-derived propensity scores. Benchmarking experiments from independent test indicated that SCMTHP could achieve comparable performance to state-of-the-art method with accuracies of 0.827 and 0.798, respectively, when evaluated on two benchmark datasets consisting of Main and Small datasets. Furthermore, SCMTHP was found to outperform several well-known machine learning-based classifiers (e.g., decision tree, k-nearest neighbor, multi-layer perceptron, naive Bayes and partial least squares regression) as indicated by both 10-fold cross-validation and independent tests. Finally, the SCMTHP web server was established and made freely available online. SCMTHP is expected to be a useful tool for rapid and accurate identification of THPs and for providing better understanding on THP biophysical and biochemical properties.


Author(s):  
Ali Mohammad Alqudah ◽  
Shoroq Qazan ◽  
Amin Alqudah

Abstract Since December 2019, the appearance of an outbreak of a novel coronavirus disease namely COVID-19 and which is previously known as 2019-nCoV. COVID-19 is a type of coronavirus that leads to the general destruction of respiratory systems and a severe respiratory symptom which are associated with highly Intensive Care Unit (ICU) admissions and death. Like any disease, the early diagnosis of coronavirus leads to limit its wide-spreading and increases the recovery rates of patients. The gold standard of COVID-19 detection is the real-time reverse transcription-polymerase chain reaction (RT-PCR) which has been used by the clinician to discover the presence or absence of this type of virus. The clinicians report that this technique has a low positive rate in the early stage of this disease. Based on this, the clinicians were forced to use another way to help in the early diagnosis of COVID-2019. So, the clinician's attention moved towards the medical imaging modalities especially the computed Tomography (CT) and X-ray chest images. Both modalities show that there is a change in the lungs in the case of COVID-19 that is different from any other type of pneumonic disease. Therefore, this research targeted toward employing different Artificial Intelligence (AI) techniques to propose a system for early detection of COVID-19 using chest X-ray images. These images are classified using different AI algorithms and a combination of them, then their performance was evaluated to recognize the best of them. These algorithms include a convolutional neural network (CNN), Softmax, support vector machine (SVM), Random Forest, and K nearest neighbor (KNN). Here CNN is into two scenarios, the first one to classify the X-ray images using a softmax classifier, and the second one to extract automated features from the images and pass these features to other classifiers (SVM, RFF, and KNN). According to the results, the performance of all classifiers is good and most of them record accuracy, sensitivity, specificity, and precision of more than 98%.


2020 ◽  
Vol 15 ◽  

This paper presents a hybrid modified grey wolf optimization (MGWO) algorithm with the feed forward net (FFN), named MGWO-FFN, for solving electrical load forecasting. The proposed model is implemented with two stages: firstly, MGWO algorithm estimates the optimum variables of the FFN through the pre-determined training samples. Then the adapted FFN is tested with the remaining other samples and is utilized to predict the electrical peak load (PL). The proposed algorithm is investigated on two real cases (i.e. predicting the annual total electrical load consumption of Beijing's city and the annual PL consumed in Egypt). To prove the superiority of the proposed algorithm, MGWO is validated by comparing with algorithm including classical GWO and PSO algorithms. Both of Beijing's and Egypt's cases results indicate that the proposed MGWO-FFN algorithm outperforms the others where less mean square error (MSE) and more accuracy are obtained compared to the error that yields using the other two algorithms.


Sign in / Sign up

Export Citation Format

Share Document