scholarly journals Formulation and evaluation of albendazole nanoparticle

2019 ◽  
Vol 9 (1-s) ◽  
pp. 16-22
Author(s):  
Yerikala Ramesh ◽  
Koorapati Balasaradhi ◽  
Kaki Rohan Abhilash

Therefore, there is a need to develop alternative novel drug delivery formulations of albendazole to improve its intestinal absorption and also to reduce its side effects during regular therapy. The Albendazole nanoparticles were prepared by hot homogenization method under high magnetic stirring using stearic acid as lipid and poloxamer 188 was used as surfactant. Initial pre-formulation studies using FTIR spectroscopy reveals that there are no interactions between Albendazole and other excipients and hence they can be used for the preparation of nanoparticles. The entrapment efficiencies varied from a minimum of 43.56 ± 0.95 % to a maximum of 85.1 ±0.58% and it can be concluded that higher amount of lipid is necessary for obtaining a good entrapment efficiency. The drug content of albendazole nanoparticles for all formulation ranges from 65.8% to 98.1%. A spherical shape was observed for the particles and the particles had a smooth morphology when examined under SEM. In vitro release studies of the formulations carried out in pH 7.4 PBS showed that the total amount of drug is released for 9hrs with sustained effect. That the formulations showed a drastic increase in size when stored at room temperature where the size of particles increased from an initial to 343.7 ±7.9 nm at the end of 1 month to 898.1 ± 5.8 nm at the end of 2 months. Entrapment efficiency of the formulation was determined at each interval to ensure that the drug molecules didn’t undergo any degradation during storage. Keywords: Albendazole, Nanoparticles, Particle size, Entrapment efficiency.

Drug Research ◽  
2020 ◽  
Author(s):  
Sonia Pahuja ◽  
Shweta Aggarwal ◽  
Prerna Sarup

Abstract Objective The present investigation entailed determination of effect of diverse cross-linking agents on Losartan Potassium loaded chitosan microspheres. The emulsion cross-linking method was employed to formulate the microspheres with an endeavour to achieve maximum sustained effect. Methods The FTIR studies revealed absence of any interaction between Losartan and chitosan. The emulsion cross linking method was accomplished in three steps encompassing formation of an aqueous and oily phase, emulsification and cross-linking. A total of eighteen Losartan formulations were developed using six different cross-linkers at three varying level were screened for optimum parameters. The in vitro drug release parameters of optimum formulations (LC3, LE3, LF3, LG3, LS3 and LV3) containing citric acid, epichlorohydrin, formaldehyde, glutaraldehyde, suphuric acid and vanillin as cross-linkers were assessed to determine the sustained effect. Results The values of evaluated parameters including percent yield (94.67%), average particle size (51.19 µm), drug content (44.38 mg) and entrapment efficiency (88.77%) connoted LG3 as the best formulation. Additionally, the values of relative measure of skewness (β1=0.01 and γ1=0.10) and platykurtic (β2=1.26) size distribution were least for LG3 with spherical shape and smooth surface as revealed by SEM studies. Conclusion The outcome of in vitro release and other characterizations of microspheres explicitly revealed glutaraldehyde as the best cross-linker amongst the cross-linkers used herewith. The maximum sustained effect (lasting over a period of 24 h) accompanied with higher MDT and t50% with lower%DE and Q14h values thus corroborated the objective of attaining sustained release of Losartan.


2020 ◽  
Vol 13 ◽  
Author(s):  
Ankita Dadwal ◽  
Neeraj Mishra ◽  
Raj Kumar Narang

Background: Psoriasis is an autoimmune disease of the skin with lapsing episodes of hyperkeratosis, irritation, and inflammation. Numerous traditional and novel drug delivery systems have been used for better penetration through psoriatic barrier cells and also for retention in the skin. As there is no effective remedy for better penetration and retention is there because of the absence of an ideal carrier for effective and safe delivery of antipsoriatic drugs. Objectives: The main objective of this project is to develop Squalene integrated NLC based carbopol 940 gel to create a local drug depot in skin for improved efficacy against psoriasis. Methods: Homogenization method is used for the formulation of Nanostructured Lipid Carrier and were characterized on the basis of size, entrapment efficiency, polydispersity index (PDI), viscosity, spreadability, DSC, zeta potential, % in vitro release, in vitro skin permeation and retention studies, physical storage stability studies and in vivo studies can use other alternative models for induction of psoriasis by severe redness, swelling macroscopically and microvascular dilation edema lasting for 10 days. Further histopathology study was done to basses of changes in the skin. Conclusion: The optimized formulation of nanostructured lipid carrier-based gel has shown significant sustained release of clobetasol propionate. Further, this formulation has also shown retention in skin because of squalene as it is sebum derived lipid show affinity towards the sebaceous gland.


Author(s):  
AHMED GARDOUH ◽  
Samar H. Faheim ◽  
Samar M. Solyman

Objective: The main purpose of this work was to prepare tolnaftate (TOL) loaded nanostructured lipid carriers (NLCs), Evaluate its characteristics and in vitro release study. Methods: Tolnaftate loaded Nanostructured lipid carriers were prepared by the high shear homogenization method using different liquid lipids types (DERMAROL DCO® and DERMAROL CCT®) and concentrations, different concentration ratios of tween80® to span20® and different homogenization speeds. All the formulated nanoparticles were subjected to particle size (PS), zeta potential (ZP), polydispersity index (PI), drug entrapment efficiency (EE), Differential Scanning Calorimetry (DSC), Transmission Electron microscopy (TEM), release kinetics and in vitro release study was determined. Results: The results revealed that NLC dispersions had spherical shapes with an average size between 154.966±1.85 nm and 1078.4±103.02 nm. High entrapment efficiency was obtained with negatively charged zeta potential with PDI value ranging from 0.291±0.02 to 0.985±0.02. The release profiles of all formulations were characterized by a sustained release behavior over 24 h and the release rates increased as the amount of surfactant decreased. The release rate of TOL is expressed following the theoretical model by Higuchi. Conclusion: From this study, It can be concluded that NLCs are a good carrier for tolnaftate delivery


Pharmaceutics ◽  
2020 ◽  
Vol 12 (9) ◽  
pp. 783
Author(s):  
Chao-Feng Mu ◽  
Fude Cui ◽  
Yong-Mei Yin ◽  
Hyun-Jong Cho ◽  
Dae-Duk Kim

Cholesteryl hemisuccinate (CHS)-conjugated chitosan (CS)-based self-assembled nanoparticles (NPs) were developed for enhancing the intracellular uptake of docetaxel in multidrug resistance (MDR)-acquired cancer cells. CHS-CS was successfully synthesized and self-aggregation, particle size, zeta potential, drug entrapment efficiency, and in vitro drug release of docetaxel-loaded CHS-CS NPs were tested. The optimized NPs had a mean hydrodynamic diameter of 303 nm, positive zeta potential of 21.3 mV, and spherical shape. The in vitro release of docetaxel from the optimized CHS-CS NPs in different pH medium (pH 6.0 and 7.4) revealed that the release was improved in a more acidic condition (pH 6.0), representing a tumor cell’s environment. The superior MDR-overcoming effect of docetaxel-loaded CHS-CS NPs, compared with docetaxel solution, was verified in anti-proliferation and cellular accumulation studies in MDR-acquired KBV20C cells. Thus, CHS-CS NPs could be potentially used for overcoming the MDR effect in anticancer drug delivery.


Author(s):  
Shanmuganathan S. ◽  
Nigma S. ◽  
Anbarasan B. ◽  
Harika B.

Nanoparticulate Carriers which is biodegradable, biocompatible and bio adhesive have significant feasible applications for administration of therapeutic molecules. The present study was aimed to formulate and optimise Capecitabine loaded Chitosan-Fe3O4 Nanoparticles and to study the in-vitro evaluation by sigma dialysis method. Capecitabine loaded chitosan – Fe3O4 nanoparticles batches with different ratios of drug: polymer (1:1, 1:2, 1:3, 1:4, 1:5, 1:6) were prepared by ionic gelation method. Increase in polymer concentration increases the nanoparticle drug content. Entrapment efficiency was 60.12% with drug to polymer ratio F3 (1:3). In-vitro release was found to be 65.20% for 12 hrs. Capecitabine from chitosanFe3O4 nanoparticles SEM image reveals discrete spherical structure and particles with size range of 100-500nm. FTIR studies represent the functional groups present with no characteristics change in formulations. Samples stored at refrigerator conditions showed better stability compared with samples kept at other conditions during 8 weeks of storage.


Author(s):  
Dilip Kumar Gupta ◽  
B K Razdan ◽  
Meenakshi Bajpai

The present study deals with the formulation and evaluation of mefloquine hydrochloride nanoparticles. Mefloquine is a blood schizonticidal quinoline compound, which is indicated for the treatment of mild-to-moderate acute malarial infections caused by mefloquine-susceptible multi-resistant strains of P. falciparum and P. vivax. The purpose of the present work is to minimize the dosing frequency, taste masking toxicity and to improve the therapeutic efficacy by formulating mefloquine HCl nanoparticles. Mefloquine nanoparticles were formulated by emulsion diffusion method using polymer poly(ε-caprolactone) with six different formulations. Nanoparticles were characterized by determining its particle size, polydispersity index, drug entrapment efficiency, drug content, particle morphological character and drug release. The particle size ranged between 100 nm to 240 nm. Drug entrapment efficacy was >95%. The in-vitro release of nanoparticles were carried out which exhibited a sustained release of mefloquine HCl from nanoparticles up to 24 hrs. The results showed that nanoparticles can be a promising drug delivery system for sustained release of mefloquine HCl.


Author(s):  
Nagratna Dhople ◽  
P N Dandag ◽  
A P Gadad ◽  
C K Pandey ◽  
Masthiholimath V S

A gastroretentive sustained release system of itopride hydrochloride was formulated to increase the gastric residence time and modulate its release behavior. Itopride hydrochloride is a prokinetic drug used in the treatment of gastroeosophageal reflux disease, Non-ulcer dyspepsia and as an antiemetic. Hence, itopride hydrochloride beads were prepared by emulsion gelation method by employing low methoxy pectin and sodium alginate as sustained release polymers in three different ratios alone and in combination and sunflower oil was used to enable floating property to the beads. The effect of variation in polymer and their concentration was investigated. The beads were evaluated for production yield, particle size, swelling index, density measurement, buoyancy, drug content, drug entrapment efficiency, in vitro release characteristics and release kinetic study. Based on drug entrapment efficiency, buoyancy, swelling and in vitro release, F9 was selected as the optimized formulation. F9 was further subjected to surface morphology by SEM, in vitro release comparison with marketed formulation, in vivo floating study in rabbits and stability study for 90 days. In vitro release follows zero order and fitted in Korsmeyer peppas model (Non-Fickian release). Therefore, the rate of drug release is due to the combined effect of drug diffusion and polymer swelling. The in vivo X-ray studies revealed that the beads were floating in the rabbit stomach up to 10 hours. Thus, it was concluded that the sustained release formulation containing itopride hydrochloride was found to improve patient compliance, minimize the side effects and decrease the frequency of administration.


Author(s):  
V K Verma ◽  
Ram A

 Solid lipid nanoparticles (SLNs) of piroxicam where produced by solvent emulsification diffusion method in a solvent saturated system. The SLNs where composed of tripamitin lipid, polyvinyl alcohol (PVAL) stabilizer, and solvent ethyl acetate. All the formulation were subjected to particle size analysis, zeta potential, drug entrapment efficiency, percent drug loading determination and in-vitro release studies. The SLNs formed were nano-size range with maximum entrapment efficiency. Formulation with 435nm in particle size and 85% drug entrapment was subjected to scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for surface morphology, differential scanning calorimetry (DSC) for thermal analysis and short term stability studies. SEM and TEM confirm that the SLNs are nanometric size and circular in shape. The drug release behavior from SLNs suspension exhibited biphasic pattern with an initial burst and prolong release over 24 h. 


2020 ◽  
Vol 10 (5) ◽  
pp. 649-663
Author(s):  
Reena Siwach ◽  
Parijat Pandey ◽  
Harish Dureja

Background: The rate-limiting step in the oral absorption of BCS class II drugs is dissolution. Their low solubility is one of the major obstacles in the process of drug development. Dissolution rate can be increased by decreasing the particle size to the nano range, eventually leading to increased bioavailability. Objective: : In the present study, glimepiride loaded nanoparticles were prepared to enhance the dissolution rate. The aim of the work was to examine the effect of polymer-drug ratio, solvent-antisolvent ratio and speed of mixing on in vitro release of glimepiride. Methods: Glimepiride is an antidiabetic drug belonging to the BCS class II drugs. The polymeric nanoparticles were formulated according to Box-Behnken Design (BBD) using nanoprecipitation technique. The prepared nanoparticles were evaluated for in vitro drug release, loading capacity, entrapment efficiency, and percentage yield. Result: It was found that NP-8 has maximum in vitro drug release and was selected as an optimized batch. Analysis of Variance (ANOVA) was applied to the in vitro drug release to study the fitness and significance of the model. The batch NP-8 showed 70.34 ± 1.09% in vitro drug release in 0.1 N methanolic HCl and 92.02 ± 1.87% drug release in phosphate buffer pH 7.8. The release data revealed that the nanoparticles followed zero order kinetics. Conclusion: The study revealed that the incorporation of glimepiride into gelucire 50/13 resulted in enhanced dissolution rate.


Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1514
Author(s):  
Ameya Sharma ◽  
Vivek Puri ◽  
Pradeep Kumar ◽  
Inderbir Singh ◽  
Kampanart Huanbutta

Various systematic phases such as inflammation, tissue proliferation, and phases of remodeling characterize the process of wound healing. The natural matrix system is suggested to maintain and escalate these phases, and for that, microfibers were fabricated employing naturally occurring polymers (biopolymers) such as sodium alginate, gelatin and xanthan gum, and reinforcing material such as nanoclay was selected. The fabrication of fibers was executed with the aid of extrusion-gelation method. Rifampicin, an antibiotic, has been incorporated into a biopolymeric solution. RF1, RF2, RF3, RF4 and RF5 were coded as various formulation batches of microfibers. The microfibers were further characterized by different techniques such as SEM, DSC, XRD, and FTIR. Mechanical properties and physical evaluations such as entrapment efficiency, water uptake and in vitro release were also carried out to explain the comparative understanding of the formulation developed. The antimicrobial activity and whole blood clotting of fabricated fibers were additionally executed, hence they showed significant results, having excellent antimicrobial properties; they could be prominent carriers for wound healing applications.


Sign in / Sign up

Export Citation Format

Share Document