scholarly journals Research Results of the Potato Digger Technological Process

2018 ◽  
Vol 12 (5) ◽  
pp. 14-19 ◽  
Author(s):  
V. M. Alakin ◽  
G. S. Nikitin

A potato digger equipped with a four­bladed beater operating in connection with rotary separating surface has low material and energy consumption, higher separating efficiency, as well as lower degree of tuber damaging. The potato digger design should include a four­bladed intake­and­feed beater to prevent potato heap transportation faults in front of the first section. (Research purpose) Increasing the technological and economic efficiency of a potato digging­and­ separating unit through the determination of the optimum values of the design parameters and operating process of the intake­and­feed beater. (Materials and methods) the authors have made an overview of general principles of ensuring the stability of the potato heap movement provided by the four­bladed intake­and­feed beater. The dependency of the minimum beater speed on the operating speed of the potato digger has been found to exclude a probability of its overloading. The methodology of calculating the potato heap velocity and the cutoff angle between the material and the beater blades has been worked out by analyzing potato heap lifting to the upper points of the working units of the rotary separator’s first section. Operating speed of the beater has been determined through the differential equation for the speed of a potato heap moving along the blade surface. (Results and discussion) Preliminary potato heap speed and cutoff angle have been found through the equation of dynamics describing the projectile motion of an object thrown at an angle. The operating values of the angles are dependent on the potato digger working speed and can be selected from the triangle of speeds. The authors have determined the dependence of the optimal beater speed on the working speed of a potato digger. Its value should exceed the minimum speed of the beater. (Conclusions) Theoretical results allow proposing the best design features and optimum working process parameters of a four­bladed beater receiving a potato heap, transporting it and lifting on the rotary separating surface.

1976 ◽  
Vol 77 (4) ◽  
pp. 709-735 ◽  
Author(s):  
Patrick D. Weidman

Measurements of the azimuthal velocity inside a cylinder which spins up or spins down at constant acceleration were obtained with a laser-Doppler velocimeter and compared with the theoretical results presented in part 1. Velocity profiles near the wave front in spin-up indicate that the velocity discontinuity given by the inviscid Wedemeyer model is smoothed out in a shear layer whose thickness varies with radius and time but scales with hE1/4Ω. The spin-down profiles are always in excellent agreement with theory when the flow is stable. Visualization studies with aluminium tracers have made possible the determination of the stability boundary for Ekman spiral waves (principally type II waves) observed on the cylinder end walls during spin-up. For spin-down to rest the flow always experienced a centrifugal instability which ultimately disrupted the interior fluid motion.


Author(s):  
S. А. Sedina ◽  
G. B. Abdikarimova ◽  
A. A. Altayeva ◽  
N. D. Rakhimov

The main factor that determines the stability of the pit benches in rocky and semi-rocky rocks is geological and structural since potential collapse prisms of a particular configuration are formed by differently oriented ruptured faults (cracks) with certain spatial relationships between themselves and the pit surface. Evaluation of possible planar, wedge-shaped, and overturning collapses of individual benches is carried out by analyzing the parameters of structural disturbances identified within the rock mass of the studied section of the open pit relative to the orientation of open pit edges. The article presents the results of the analysis of the kinematic stability of the optimal parameters of the benches on the example of the Kurzhunkul open pit, which ensures their stability on the limiting contour. A sequence of actions is proposed for determining the stability parameters of rock benches in a quarry. Performing a kinematic analysis based on the identified systems of cracks allows us to determine the probable failure patterns of the slopes of the benches and select the calculation schemes for their stability to substantiate their optimal parameters and make decisions on their stabilization. Geological and structural zoning of the quarry space according to this method allows analyzing the holding capacity of safety berms to control detected collapses, to highlight benches that need to be brought into a safe state with the determination of their stable parameters, and to recommend options for optimizing the design profile.


2020 ◽  
Vol 92 (6) ◽  
pp. 13-25
Author(s):  
Vl.I. KOLCHUNOV ◽  
◽  
A.I. DEMYANOV ◽  
M.M. MIHAILOV ◽  
◽  
...  

The article offers a method and program for experimental studies of reinforced concrete structures with cross-shaped spatial crack under torsion with bending, the main purpose of which is to check the design assumptions and experimental determination of the design parameters of the proposed calculation method. The conducted experimental studies provide an opportunity to test the proposed calculation apparatus and clarify the regularities for determining deflections, angles of rotation of extreme sections, and stresses in the compressed zone of concrete. For analysis, the article presents a typical experimental scheme for the formation and development of cracks in the form of a sweep, as well as characteristic graphs of the dependence of the angles of rotation of end sections.


Author(s):  
Sunny Katyara ◽  
Lukasz Staszewski ◽  
Faheem Akhtar Chachar

Background: Since the distribution networks are passive until Distributed Generation (DG) is not being installed into them, the stability issues occur in the distribution system after the integration of DG. Methods: In order to assure the simplicity during the calculations, many approximations have been proposed for finding the system’s parameters i.e. Voltage, active and reactive powers and load angle, more efficiently and accurately. This research presents an algorithm for finding the Norton’s equivalent model of distribution system with DG, considering from receiving end. Norton’s model of distribution system can be determined either from its complete configuration or through an algorithm using system’s voltage and current profiles. The algorithm involves the determination of derivative of apparent power against the current (dS/dIL) of the system. Results: This work also verifies the accuracy of proposed algorithm according to the relative variations in the phase angle of system’s impedance. This research also considers the varying states of distribution system due to switching in and out of DG and therefore Norton’s model needs to be updated accordingly. Conclusion: The efficacy of the proposed algorithm is verified through MATLAB simulation results under two scenarios, (i) normal condition and (ii) faulty condition. During normal condition, the stability factor near to 1 and change in dS/dIL was near to 0 while during fault condition, the stability factor was higher than 1 and the value of dS/dIL was away from 0.


2016 ◽  
Vol 5 (10) ◽  
pp. 4920
Author(s):  
Amar M. Ali ◽  
Hussain. J. Mohammed*

A new, simple, sensitive and rapid spectrophotometric method is proposed for the determination of trace amount of Nickel (II). The method is based on the formation of a 1:2 complex with 4-(4-((2-hydroxy-6-nitrophenyl) diazenyl) -3-methyl-5-oxo-2, 5-dihydro-1H-pyrazol-1-yl) benzenesulfonic acid (2-ANASP) as a new reagent is developed. The complex has a maximum absorption at 516 nm and εmax of 1. 84 X 105 L. mol-1. cm-1. A linear correlation (0. 25 – 4. 0μg. ml-1) was found between absorbance at λmax and concentration. The accuracy and reproducibility of the determination method for various known amounts of Nickel (II) were tested. The results obtained are both precise (RSD was 1. 2 %) and accurate (relative error was 0. 787 %). The effect of diverse ions on the determination of Nickel (II) to investigate the selectivity of the method were also studied. The stability constant of the product was 0. 399 X 106 L. mol-1. The proposed method was successfully applied to the analysis of diabetes blood and normal human blood. 


Symmetry ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 525 ◽  
Author(s):  
Mehdi Keshavarz-Ghorabaee ◽  
Maghsoud Amiri ◽  
Edmundas Kazimieras Zavadskas ◽  
Zenonas Turskis ◽  
Jurgita Antucheviciene

The weights of criteria in multi-criteria decision-making (MCDM) problems are essential elements that can significantly affect the results. Accordingly, researchers developed and presented several methods to determine criteria weights. Weighting methods could be objective, subjective, and integrated. This study introduces a new method, called MEREC (MEthod based on the Removal Effects of Criteria), to determine criteria’ objective weights. This method uses a novel idea for weighting criteria. After systematically introducing the method, we present some computational analyses to confirm the efficiency of the MEREC. Firstly, an illustrative example demonstrates the procedure of the MEREC for calculation of the weights of criteria. Secondly, a comparative analysis is presented through an example for validation of the introduced method’s results. Additionally, we perform a simulation-based analysis to verify the reliability of MEREC and the stability of its results. The data of the MCDM problems generated for making this analysis follow a prevalent symmetric distribution (normal distribution). We compare the results of the MEREC with some other objective weighting methods in this analysis, and the analysis of means (ANOM) for variances shows the stability of its results. The conducted analyses demonstrate that the MEREC is efficient to determine objective weights of criteria.


Robotica ◽  
2021 ◽  
pp. 1-14
Author(s):  
Hongkai Li ◽  
Xianfei Sun ◽  
Zishuo Chen ◽  
Lei Zhang ◽  
Hongchao Wang ◽  
...  

Abstract Inspired by gecko’s adhesive feet, a wheeled wall climbing robot is designed in this paper with the synchronized gears and belt system acting as the wheels by considering both motion efficiency and adhesive capability. Adhesion of wheels is obtained by the bio-inspired adhesive material wrapping on the outer surface of wheels. A ducted fan mounted on the back of the robot supplies thrust force for the adhesive material to generate normal and shear adhesion force whilemoving on vertical surfaces. Experimental verification of robot climbing on vertical flat surface was carried out. The stability and the effect of structure design parameters were analyzed.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Shuai Yang ◽  
Haijun Jiang ◽  
Cheng Hu ◽  
Juan Yu ◽  
Jiarong Li

Abstract In this paper, a novel rumor-spreading model is proposed under bilingual environment and heterogenous networks, which considers that exposures may be converted to spreaders or stiflers at a set rate. Firstly, the nonnegativity and boundedness of the solution for rumor-spreading model are proved by reductio ad absurdum. Secondly, both the basic reproduction number and the stability of the rumor-free equilibrium are systematically discussed. Whereafter, the global stability of rumor-prevailing equilibrium is explored by utilizing Lyapunov method and LaSalle’s invariance principle. Finally, the sensitivity analysis and the numerical simulation are respectively presented to analyze the impact of model parameters and illustrate the validity of theoretical results.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1976
Author(s):  
Tomasz Garbowski ◽  
Tomasz Gajewski

Knowing the material properties of individual layers of the corrugated plate structures and the geometry of its cross-section, the effective material parameters of the equivalent plate can be calculated. This can be problematic, especially if the transverse shear stiffness is also necessary for the correct description of the equivalent plate performance. In this work, the method proposed by Biancolini is extended to include the possibility of determining, apart from the tensile and flexural stiffnesses, also the transverse shear stiffness of the homogenized corrugated board. The method is based on the strain energy equivalence between the full numerical 3D model of the corrugated board and its Reissner-Mindlin flat plate representation. Shell finite elements were used in this study to accurately reflect the geometry of the corrugated board. In the method presented here, the finite element method is only used to compose the initial global stiffness matrix, which is then condensed and directly used in the homogenization procedure. The stability of the proposed method was tested for different variants of the selected representative volume elements. The obtained results are consistent with other technique already presented in the literature.


Sign in / Sign up

Export Citation Format

Share Document