scholarly journals Аbout medical support of a unique arctic expedition of the «Captain Dranitsyn» icebreaker

2021 ◽  
Vol 6 (4) ◽  
pp. 89-88
Author(s):  
V. L. Arkhipovsky ◽  
A. V. Spiridonov ◽  
E. V. Kazakevich

The article presents information about the international project MOSAiC, the largest polar expedition in recent years aimed at studying climate in the Arctic. At the center of the project is the Polar Star research icebreaker (Polarstern, Germany), which drifted along with sea ice through the Central Arctic from 2019 to 2020. The Polarstern has become the central observatory for atmospheric, ice, snow, oceanographic, environmental and biogeochemical studies. The Russian icebreaker Kapitan Dranitsyn took part in providing the expedition, which made 2 Arctic voyages to deliver people and various cargoes to the Polarstern ship. The diesel-electric icebreaker Kapitan Dranitsyn set a world record in the northern latitudes, for the first time independently reaching 88°28,4′ north latitude (the highest point, date of achievement — February 26, 2020). Medical support for the Arctic icebreaker’s flights was provided by the ship’s doctor FGBUZ SMKTS im. N.A.Semashko FMBA of Russia. The article presents the experience of the ship’s doctor in providing medical assistance to crew members and expeditions in extreme conditions of the Arctic.

2020 ◽  
Vol 33 (16) ◽  
pp. 6793-6807
Author(s):  
Tiina Nygård ◽  
Tuomas Naakka ◽  
Timo Vihma

AbstractAlong with the amplified warming and dramatic sea ice decline, the Arctic has experienced regionally and seasonally variable moistening of the atmosphere. Based on reanalysis data, this study demonstrates that the regional moistening patterns during the last four decades, 1979–2018, were predominantly shaped by the strong trends in horizontal moisture transport. Our results suggest that the trends in moisture transport were largely driven by changes in atmospheric circulation. Trends in evaporation in the Arctic had a smaller role in shaping the moistening patterns. Both horizontal moisture transport and local evaporation have been affected by the diminishing sea ice cover during the cold seasons from autumn to spring. Increases in evaporation have been restricted to the vicinity of the sea ice margin over a limited period during the local sea ice decline. For the first time we demonstrate that, after the sea ice has disappeared from a region, evaporation over the open sea has had negative trends due to the effect of horizontal moisture transport to suppress evaporation. Near the sea ice margin, the trends in moisture transport and evaporation and the cloud response to those have been circulation dependent. The future moisture and cloud distributions in the Arctic are expected to respond to changes in atmospheric pressure patterns; circulation and moisture transport will also control where and when efficient surface evaporation can occur.


2010 ◽  
Vol 4 (1) ◽  
pp. 153-161 ◽  
Author(s):  
G. S. Dieckmann ◽  
G. Nehrke ◽  
C. Uhlig ◽  
J. Göttlicher ◽  
S. Gerland ◽  
...  

Abstract. We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3*6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard). This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This finding is an important step in the quest to quantify its impact on the sea ice driven carbon cycle and should in the future enable improvement parametrization sea ice carbon models.


2001 ◽  
Vol 33 ◽  
pp. 525-532 ◽  
Author(s):  
H. Goosse ◽  
F. M. Selten ◽  
R. J. Haarsma ◽  
J. D. Opsteegh

AbstractA 2500 year integration has been performed with a global coupled atmospheric-sea-ice-ocean model of intermediate complexity with the main objective of studying the climate variability in polar regions on decadal time-scales and longer. The atmospheric component is the ECBILT model, a spectral T21 three-level quasi-geostrophic model that includes a representation of horizontal and vertical heat transfers as well as of the hydrological cycle. ECBILT is coupled to the CLIO model, which consists of a primitive-equation free-surface ocean general circulation model and a dynamic-thermodynamic sea-ice model. Comparison of model results with observations shows that the ECBILT-CLIO model is able to reproduce reasonably well the climate of the high northern latitudes. The dominant mode of coupled variability between the atmospheric circulation and sea-ice cover in the simulation consists of an annular mode for geopotential height at 800 hPa and of a dipole between the Barents and Labrador Seas for the sea-ice concentration which are similar to observed patterns of variability. In addition, the simulation displays strong decadal variability in the sea-ice volume, with a significant peak at about 18 years. Positive volume anomalies are caused by (1) a decrease in ice export through Fram Strait associated with more anticyclonic winds at high latitudes, (2) modifications in the freezing/melting rates in the Arctic due to lower air temperature and higher surface albedo, and (3) a weaker heat flux at the ice base in the Barents and Kara seas caused by a lower inflow of warm Atlantic water. Opposite anomalies occur during the volume-decrease phase of the oscillation.


Author(s):  
V. O. Karklin ◽  
A. V. Yulin ◽  
M. V. Sharatunova ◽  
L. Р. Mоchnova

The difficulty of ice conditions and their impact on various marine applications are mainly related to fluctuations in ice massifs areas that are subject not only to interannual, but also to climate variability. The article presents for the first time the analysis of the areas of the Kara Sea ice massifs in the summer during for the “cold” (1954–1985) and “warm” (1986–2017) climatic periods in the Arctic. The typical changes in ice massifs areas and frequency of their absence in different climatic periods can be used to characterize the predicted type of ice conditions in the Kara Sea.


2019 ◽  
Author(s):  
Rebecca J. Rolph ◽  
Daniel L. Feltham ◽  
David Schroeder

Abstract. Many studies have shown a decrease in Arctic sea ice extent. It does not logically follow, however, that the extent of the marginal ice zone (MIZ), here defined as the area of the ocean with ice concentrations from 15 to 80 %, is also changing. Here, we present, for the first time, an analysis of satellite observations of pan-Arctic averaged MIZ extent. We find no trend in the MIZ extent during the last 40 years from observations. We present simulations from a coupled sea ice-ocean mixed layer model using a prognostic floe size distribution which we find is consistent with, but poorly constrained by, existing satellite observations of pan-Arctic MIZ extent. We provide seasonal upper and lower bounds on MIZ extent based on the 4 satellite-derived sea ice concentration datasets used. An extrapolation of the observations shows the MIZ extent as remaining relatively constant in the coming decades, at least until the Arctic is completely covered by seasonal ice. We find a small increase in the summer MIZ fraction (MIZ extent divided by sea ice extent), which can be attributed to the reduction in total sea ice extent. The MIZ location is trending northwards, consistent with other studies. Given the results of this study, we suggest that future studies need to remain cautious and provide a specific and clear definition when stating the MIZ is ‘rapidly changing’.


Author(s):  
R. Ressel ◽  
A. Frost ◽  
S. Lehner

Most icebergs present in northern latitudes originate from western Greenland glaciers, from where they drift into Baffin Bay, circulating north along Greenland coast and south along Canadian coast. Some of them drift more southwards up to Newfoundland, where they frequently cross shipping routes. Furthermore, the Arctic summer sea ice coverage significantly decreased over the last three decades. This has attracted numerous attentions from maritime end-users. To keep Arctic shipping routes safe, the monitoring of sea ice and icebergs is crucial. For this purpose, satellite-based Synthetic Aperture Radar (SAR) is well suited. Equipped with an active radar antenna, SAR satellites provide image data of the ocean and frozen waters independent of weather conditions, cloud cover or absence of daylight. In this paper, we present a processor for sea ice classification and (subsequent) iceberg detection based on TerraSAR-X imagery. In the classification step, texture features are extracted from the images and fed into a neural network, indicating areas of low sea ice concentration. Then, an adapted Constant False Alarm Rate (CFAR) detector is executed in order to detect icebergs. In the end, sea ice boundary and iceberg positions are output. Our experiments deal with HH polarized TerraSAR-X images taken in spring season in the Baffin Bay off the western Greenland coast, where both, sea ice and icebergs are present. Our results exemplify how a comprehensive ice processor with complementary information can be set up for near real time (NRT) service in ice infested waters.


2010 ◽  
Vol 4 (2) ◽  
pp. 227-230 ◽  
Author(s):  
G. S. Dieckmann ◽  
G. Nehrke ◽  
C. Uhlig ◽  
J. Göttlicher ◽  
S. Gerland ◽  
...  

Abstract. We report for the first time on the discovery of calcium carbonate crystals as ikaite (CaCO3·6H2O) in sea ice from the Arctic (Kongsfjorden, Svalbard) as confirmed by morphology and indirectly by X-ray diffraction as well as XANES spectroscopy of its amorophous decomposition product. This finding demonstrates that the precipitation of calcium carbonate during the freezing of sea ice is not restricted to the Antarctic, where it was observed for the first time in 2008. This observation is an important step in the quest to quantify its impact on the sea ice driven carbon cycle.


2021 ◽  
Vol 9 (10) ◽  
pp. 1145
Author(s):  
Genrikh V. Alekseev ◽  
Natalia I. Glok ◽  
Anastasia E. Vyazilova ◽  
Natalia E. Kharlanenkova ◽  
Mikhail Yu. Kulakov

Global climate models, focused on projecting anthropogenic warming, have not detected an increase in sea surface temperature (SST) at low latitudes comparable to the observed one. This appears to be one reason for the discrepancy between the model estimates of warming and reduction of the sea ice extent in the Arctic and the observed changes in the climate system. In previous studies, it was shown that short-term manifestations of the impact of low latitudes on the Arctic climate were identified in 2–3 weeks as a result of strengthening of atmospheric circulation patterns. In this paper, for the first time, a climatic relationship was established among an increase in SST, air temperature, and water vapor content at low latitudes, and a decrease in sea ice extent in the Arctic. ECMWF Re-Analysis data (ERA-Interim, ERA5), Hadley Centre Sea Ice and Sea Surface Temperature data set (HadISST), sea ice archives of the World Centers NSIDC (USA), and Arctic and Antarctic Research Institute (Russia), observations of water temperature in the Kola section (33°30′ E), calculated sea ice parameters using the Arctic and Antarctic Research Institute coupled ice-ocean circulation model (AARI–IOCM). Methods of multivariate correlation analysis, calculating spectra and coherence, and creating correlation graphs were used to obtain the results. For the first time, estimates of the effect of heat transport from low to high latitudes on climate change and sea ice extent in the Arctic over the past 40 years have been obtained, explaining a significant part of their variability. The increase in heat transport is affected by an increase in SST at low latitudes, where a significant part of the solar heat is accumulated. Due to the increase in SST, the amount of heat transported by the ocean and the atmosphere from low latitudes to the Arctic increases, leading to an increase in the air temperature, water vapor content, downward longwave radiation at high latitudes, and a decrease in the thickness and extent of winter sea ice. Potential topics include, but are not limited to: the role of heat and moisture transport in the Arctic warming, effect of SST at low latitudes on transports, linkage of warming in low latitudes and in shrinking of the Arctic sea ice.


Sign in / Sign up

Export Citation Format

Share Document