scholarly journals AN ARTIFICIAL EXPERIMENT AIMED TO SPECIFY THE GRAVITY LAW IN THE SOLAR SYSTEM

Metaphysics ◽  
2020 ◽  
pp. 137-146
Author(s):  
A. P Yefremov

Ultra-sensitivity of a planet’s gravity assist (GA) to changes of the test-body impact parameter prompts a space experiment testing the nature of gravitational field in the Solar system. The Sun, Earth and Venus serve as the space lab with a primitive space probe (ball) as a test body moving on a ballistic trajectory from the Earth to Venus (rendering GA) and backwards to the Earth’s orbit. We show that in Newton and Einstein gravity, the probe’s final positions (reached at the same time) may differ greatly; an Earth’s observer can measure the gap.

2019 ◽  
Vol 2 (3) ◽  

To solve fundamental and applied problems, it is useful to detect signs of external influences on the Solar system from the synchronous responses of the Earth’s shells, using a systemic and interdisciplinary analysis of solar-terrestrial relations - taking into account, along with solar activity and GCR fluxes, the endogenous activity of the Earth due to gravitational effects on the Earth with the sides of the Moon, the Sun and other celestial bodies of the Solar system during its barycentric motion in the gravitational field of the Galaxy, as well as the effects of perturbations on the Solar system as a whole. At the same time, the mechanism, energy, cyclicity, synchronism, change in the shape of the Earth and gravity, polar asymmetry and jump-like manifestations of solar-terrestrial relations, instability of the Earth’s daily rotation become explainable. The Solar system is subject to external influences of gravity of the heavy planets of Jupiter and Saturn in the course of its barycentric motion in the gravitational field of the Galaxy, as well as the bringing in solar system of additional energy when exposed to a heterogeneous interstellar environment.


2019 ◽  
Vol 12 (1) ◽  
pp. 8
Author(s):  
Jiri Stavek

In our approach we have combined knowledge of Old Masters (working in this field before the year 1905), New Masters (working in this field after the year 1905) and Dissidents under the guidance of Louis de Broglie and David Bohm. Based on the great experimental work of Robert Pound, Glen A. Rebka and J.L. Snider we have proposed a squeezing of the super-elastic double-helix photon in the gravitational field. We have newly defined the squeeze rate of that photon particle on the helical path. We have inserted this squeeze rate into the very-well old formulae of Newton, Soldner, Gerber and Einstein and might glimpse traces of the quantum gravity. The squeeze rate of photons can be studied in details using the Great instrument - the Advanced LIGO - located on the surface of the Earth (USA, Italy, Japan). The observed strains on the level 5*10-19 should be caused by the gravitational field of our Earth. The observed strains on the level 5*10-22 should be caused by the gravitational fields of the Moon and the Sun. We estimate that the experimental value of the gravitational constant G studied by the LIGO instrument can achieve the accuracy to the level of ppb (parts per billion) after the removal of those strains from the measured signal and the removal of the gravitational influences of the Earth, the Moon, the Sun, Venus and Jupiter. To study the squeeze effect on a bigger scale we propose to analyze the Pioneer anomaly where Pioneer´s photons have been flying around the planets in our Solar system causing the squeeze effect - the anomalous blueshift. Similarly, we can study cosmic microwave photons flying around the objects in our Solar system that might create “the axis of evil” - temperature fluctuations in the CMB map (Wien displacement law). Can we prepare in our Solar system “tired” light by frequent blueshift - redshift transitions? Can it be that Nature cleverly inserted the squeeze rate into our very-well known Old Formulae? We want to pass this concept into the hands of Readers of this Journal better educated in the Mathematics and Physics.


2021 ◽  
Vol 30 (1) ◽  
pp. 103-109
Author(s):  
Natan A. Eismont ◽  
Vladislav A. Zubko ◽  
Andrey A. Belyaev ◽  
Ludmila V. Zasova ◽  
Dmitriy A. Gorinov ◽  
...  

Abstract This study discusses the usage of Venus gravity assist in order to choose and reaching any point on Venusian surface. The launch of a spacecraft to Venus during the launch windows of 2029 to 2031 is considered for this purpose. The constraints for the method are the re-entry angle and the maximum possible overload. The primary basis of the proposed strategy is to use the gravitational field of Venus to transfer the spacecraft to an orbit resonant to the Venusian one – with the aim of expanding accessible landing areas. Results of the current research show that this strategy provides an essential increase in accessible landing areas and, moreover, may provide an access to any point on the surface of Venus with a small increase in ∆V required for launch from the Earth and in the flight duration. The comparison with the landing without using gravity assist near planet is also given.


2019 ◽  
Vol 2 (1) ◽  
pp. 27-35
Author(s):  
Anisa Nur Afida ◽  
Yuberti Yuberti ◽  
Mukarramah Mustari

Abstract: This study aims to determine the function of the sun in the perspective of science and al-Qur'an . The research method used is qualitative research methods with the type of research library (Library Research). This research applies data analysis technique of Milles and Huberman model, with steps: 1) data reduction; 2) data display; 3) verification. The result of this research is, the theories that science explain related to the function of the sun in accordance with what is also described in the Qur'an. Science explains that the sun as the greatest source of light for the earth can produce its own energy. This is explained in the Qur'an that the sun is described as siraj and dhiya' which means sunlight is sourced from itself, as the center of the solar system is not static but also moves this matter in the Qur'an explained in QS Yāsin verse 38, besides science and the Qur'an also equally explain that the sun can be made as a calculation of time.Abstrak: Penelitian ini bertujuan untuk mengetahui fungsi matahari dalam perspektif sains dan al-Qur’an..Metode penelitian yang digunakan yaitu metode penelitian kualitatif dengan jenis penelitian pustaka (Library Research). Penelitian ini menggunakan teknik analisis data model Milles dan Huberman, dengan langkah-langkah: 1) reduksi data; 2) display data; 3) verifikasi. Hasil dari penelitian ini yaitu, teori-teori yang sains jelaskan berkaitan dengan fungsi matahari sesuai dengan apa yang juga di jelaskan dalam al-Qur’an. Sains menjelaskan bahwa matahari sebagai sumber energi cahaya terbesar bagi bumi dapat menghasilkan energinya sendiri hal ini dijelaskan dalam al-Qur’an bahwa matahari dideskripsikan sebagai siraj dan dhiya’yang berarti sinar matahari bersumber dari dirinya sendiri, sebagai pusat tata surya matahari tidaklah statis melainkan juga bergerak hal ini dalam al-Qur’an di jelaskan dalam QS Yāsin ayat 38, selain itu sains dan al-Qur’an juga sama-sama menjelaskan bahwa matahari  dapat di jadikan sebagai perhitungan waktu serta petunjuk dari bayang-bayang.


2012 ◽  
Vol 2012 ◽  
pp. 1-8
Author(s):  
Alina-Daniela Vîlcu

Using a differential geometric treatment, we analytically derived the expression for De Sitter (geodesic) precession in the elliptical motion of the Earth through the gravitational field of the Sun with Schwarzschild's metric. The expression obtained in this paper in a simple way, using a classical approach, agrees with that given in B. M. Barker and R. F. O'Connell (1970, 1975) in a different setting, using the tools of Newtonian mechanics and the Euler-Lagrange equations.


2015 ◽  
Vol 112 (14) ◽  
pp. 4214-4217 ◽  
Author(s):  
Konstantin Batygin ◽  
Greg Laughlin

The statistics of extrasolar planetary systems indicate that the default mode of planet formation generates planets with orbital periods shorter than 100 days and masses substantially exceeding that of the Earth. When viewed in this context, the Solar System is unusual. Here, we present simulations which show that a popular formation scenario for Jupiter and Saturn, in which Jupiter migrates inward from a > 5 astronomical units (AU) to a ≈ 1.5 AU before reversing direction, can explain the low overall mass of the Solar System’s terrestrial planets, as well as the absence of planets with a < 0.4 AU. Jupiter’s inward migration entrained s ≳ 10−100 km planetesimals into low-order mean motion resonances, shepherding and exciting their orbits. The resulting collisional cascade generated a planetesimal disk that, evolving under gas drag, would have driven any preexisting short-period planets into the Sun. In this scenario, the Solar System’s terrestrial planets formed from gas-starved mass-depleted debris that remained after the primary period of dynamical evolution.


1988 ◽  
Vol 7 (1) ◽  
pp. 38-47
Author(s):  
C. P. Snyman

In view of the principle of actualism the early history of the earth must be explained on the basis of present-day natural phenomena and the basic Laws of Nature. The study of the solar system leads to the conclusion that the planets were formed as by-products when the sun developed from a rotating cloud of cosmic gas and dust. The protoplanets or planetesimals could have accreted as a result of mutual collisions, during which they could have become partly molten so that they could differentiate into a crust, a mantle and a core on the basis of differences in density.


2019 ◽  
Vol 11 (22) ◽  
pp. 2717 ◽  
Author(s):  
David Doelling ◽  
Konstantin Khlopenkov ◽  
Conor Haney ◽  
Rajendra Bhatt ◽  
Brent Bos ◽  
...  

The Earth-viewed images acquired by the space probe OSIRIS-REx during its Earth gravity assist flyby maneuver on 22 September 2017 provided an opportunity to radiometrically calibrate the onboard NavCam imagers. Spatially-, temporally-, and angularly-matched radiances from the Earth viewing GOES-15 and DSCOVR-EPIC imagers were used as references for deriving the calibration gain of the NavCam sensors. An optimized all-sky tropical ocean ray-matching (ATO-RM) calibration approach that accounts for the spectral band differences, navigation errors, and angular geometry differences between NavCam and the reference imagers is formulated in this paper. Prior to ray-matching, the GOES-15 and EPIC pixel level radiances were mapped into the NavCam field of view. The NavCam 1 ATO-RM gain is found to be 9.874 × 10−2 Wm−2sr−1µm−1DN−1 with an uncertainty of 3.7%. The ATO-RM approach predicted an offset of 164, which is close to the true space DN of 170. The pre-launch NavCam 1 and 2 gains were compared with the ATO-RM gain and were found to be within 2.1% and 2.8%, respectively, suggesting that sensor performance is stable in space. The ATO-RM calibration was found to be consistent within 3.9% over a factor of ±2 NavCam 2 exposure times. This approach can easily be adapted to inter-calibrate other space probe cameras given the current constellation of geostationary imagers.


1972 ◽  
Vol 45 ◽  
pp. 401-408 ◽  
Author(s):  
F. L. Whipple

The evolution of the solar system is surveyed, it being presumed that the Sun, Jupiter, and Saturn formed rather quickly and essentially with the composition of the original collapsing cloud of dust and gas. Just as the refractory material of the cloud is considered to have formed into planetesimals, from which the terrestrial planets collected, so is the icy material supposed to have produced comets, or cometesimals, from which Uranus and Neptune (and to some extent Saturn and Jupiter) were built up. The presence of a residual belt of comets beyond the orbit of Neptune is discussed, analysis of possible perturbative effects on P/Halley indicating that the total mass of such a belt at 50 AU from the Sun could not now exceed the mass of the Earth.


2011 ◽  
Vol 20 (01) ◽  
pp. 17-22 ◽  
Author(s):  
I. B. KHRIPLOVICH

We consider the capture of galactic dark matter by the solar system, due to the gravitational three-body interaction of the Sun, a planet, and a dark matter particle. Simple estimates are presented for the capture cross-section, as well as for the density and velocity distributions of captured dark matter particles close to the Earth.


Sign in / Sign up

Export Citation Format

Share Document