scholarly journals The efficiency of use lentiviral vectors for the transformation of rooster spermatogenic cells in vivo

2019 ◽  
Vol 14 (2) ◽  
pp. 162-169
Author(s):  
Natalya Alexandrovna Volkova ◽  
Anastasia Nikolaevna Vetokh ◽  
Lyudmila Aleksandrovna Volkova ◽  
Anatolievna Zinovyeva Nataliya

Male gonad cells are considered as promising target cells for the introduction of recombinant DNA within obtaining genetically modified individuals with given characteristics. The use of testicular spermatogonial stem cells is of the greatest interest. In the process of differentiation, this type of cell gives rise to a significant population of mature male germ cells. In the case of their genetic transformation, differentiated cells can be used to inseminate females in order to produce transgenic progeny. The aim of the research was to study the efficiency of using lentiviral vectors for the local transformation of roosters’ testicular spermatogenic cells. We used a lentiviral vector containing the ZsGreen reporter gene under the control of the CMV promoter. In vitro transformation of rooster spermatogenic cells was carried out by infection with a viral preparation, in vivo through multiple injections of the viral preparation into the testicular parenchyma of roosters ( n = 5). The efficiency of transformation was assessed by expression of the reporter ZsGreen gene in transfected spermatogenic cells. The success of using lentiviral vectors for the genetic transformation of rooster spermatogenic cells was shown in experiments in vitro and in vivo . The transformation efficiency of this cells types in an in vitro culture varied from 45 to 57% and averaged 48 ± 4%. The expression of the ZsGreen reporter gene in the cells of the spermatogenic epithelium of the testes was established in almost all experimental roosters in the in vivo experiments. The number of seminiferous tubules with transformed spermatogenic cells varied in the studied experimental roosters from 10 to 22%. The effectiveness of genetic transformation of the testes spermatogenic cells was 1.8 ± 0.2%. The obtained results indicate to the success of using lentiviral vectors for the genetic transformation of spermatogenic cells of rooster testes in vivo in order to create individuals with genetically transformed germ cells for the further production of transgenic offspring with given characteristics.

Reproduction ◽  
2009 ◽  
Vol 137 (3) ◽  
pp. 469-479 ◽  
Author(s):  
Weipeng Xiong ◽  
Haikun Wang ◽  
Hui Wu ◽  
Yongmei Chen ◽  
Daishu Han

Apoptotic spermatogenic cells and residual bodies are phagocytosed and degraded by Sertoli cells during mammalian spermatogenesis. The meaning of this event remains to be clarified. In this report, we demonstrate that apoptotic spermatogenic cells and residual bodies can be used to produce ATP by Sertoli cells after phagocytosis of them. Sertoli cells produced the highest level of ATP compared with other testicular cells. Phagocytosis assayin vitroshowed that engulfment of apoptotic spermatogenic cells increases ATP production by Sertoli cells. The increased ATP production was detected in seminiferous tubules at the stages where phagocytosis occurs. Induced apoptosis of spermatogenic cellsin vivoincreased ATP production in seminiferous tubules. The augmentation of ATP production bothin vitroandin vivoassociated with the lipid formation in Sertoli cells after phagocytosis of apoptotic spermatogenic cells. The lipid β-oxidation was a predominant pathway to produce ATP in Sertoli cells. We conclude that after phagocytosis by Sertoli cells, apoptotic spermatogenic cells are degraded to form lipids that are then used to produce ATP. The results suggest that apoptotic spermatogenic cells can be energy sources for Sertoli cells that may define a novel meaning of spermatogenic cell death.


Reproduction ◽  
2016 ◽  
Vol 151 (5) ◽  
pp. 527-538 ◽  
Author(s):  
M Faure ◽  
E Guibert ◽  
S Alves ◽  
B Pain ◽  
C Ramé ◽  
...  

Abstract Metformin, an insulin sensitiser from the biguanide family of molecules, is used for the treatment of insulin resistance in type 2 diabetes individuals. It increases peripheral glucose uptake and may reduce food intake. Based on the tight link between metabolism and fertility, we investigated the role of metformin on testicular function using in vitro culture of Sertoli cells and seminiferous tubules, complemented by in vivo data obtained following metformin administration to prepubertal chickens. In vitro, metformin treatment reduced Sertoli cell proliferation without inducing apoptosis and morphological changes. The metabolism of Sertoli cells was affected because lactate secretion by Sertoli cells increased approximately twofold and intracellular free ATP was negatively impacted. Two important pathways regulating proliferation and metabolism in Sertoli cells were assayed. Metformin exposure was not associated with an increased phosphorylation of AKT or ERK. There was a 90% reduction in the proportion of proliferating germ cells after a 96-h exposure of seminiferous tubule cultures to metformin. In vivo, 6-week-old chickens treated with metformin for 3 weeks exhibited reduced testicular weight and a 50% decrease in testosterone levels. The expression of a marker of undifferentiated germ cells was unchanged in contrast to the decrease in expression of ‘protamine’, a marker of differentiated germ cells. In conclusion, these results suggest that metformin affects the testicular energy content and the proliferative ability of Sertoli and germ cells. Reproduction (2016) 151 527–538


Reproduction ◽  
2010 ◽  
Vol 139 (5) ◽  
pp. 883-892 ◽  
Author(s):  
Nobuo Terada ◽  
Nobuhiko Ohno ◽  
Sei Saitoh ◽  
Yurika Saitoh ◽  
Masayuki Komada ◽  
...  

We previously reported that a membrane skeletal protein, 4.1G (also known as EPB41L2), is immunolocalized in mouse seminiferous tubules. In this study, the 4.1G immunolocalizaiton was precisely evaluated at various stages of the mouse seminiferous epithelial cycle with ‘in vivocryotechnique’ and also with pre-embedding immunoelectron microscopy in testicular tissues whose ultrastructures were well preserved with glycerol treatment before cryosectioning. In addition, 4.1G-deficient mice were produced, and the morphology of their seminiferous tubules was also evaluated. The 4.1G immunolocalization was different among stages, indicating that it was not only along cell membranes of Sertoli cells, but also those of spermatogonia and early spermatocytes. To confirm the 4.1G immunolocalization in germ cells,in vitroculture of spermatogonial stem cells (SSCs) was used for immunocytochemistry and immunoblotting analysis. In the cultured SSCs, 4.1G was clearly expressed and immunolocalized along cell membranes, especially at mutual attaching regions. In testicular tissues, cell adhesion molecule-1 (CADM1), an intramembranous adhesion molecule, was colocalized on basal parts of the seminiferous tubules and immunoprecipitated with 4.1G in the tissue lysate. Interestingly, in the 4.1G-deficient mice, histological manifestation of the seminiferous tubules was not different from that in wild-type mice, and the CADM1 was also immunolocalized in the same pattern as that in the wild-type. Moreover, the 4.1G-deficient male mice were fertile. These results were probably due to functional redundancy of unknown membrane skeletal molecules in germ cells. Thus, a novel membrane skeletal protein, 4.1G, was found in germ cells, and considering its interaction with CADM family, it probably has roles in attachment of both Sertoli–germ and germ–germ cells.


Blood ◽  
2009 ◽  
Vol 114 (22) ◽  
pp. 4581-4581
Author(s):  
Lian Ma ◽  
Xiaoying Wu ◽  
Limin Lin ◽  
Guangyu Lin ◽  
Qiuling Tang ◽  
...  

Abstract Abstract 4581 Introduction Infertility affects 15% of couples, about 50% infertility caused by male and growing evidence suggested an increasing problems in male reproductive. Recent studies have demostrated that adult stem cells have more flexible potentials than expected, and possessed the plasticity and capacity to transdifferentiate into mutilineage cells, including germ cells. Human umbilical cord-derived mesenchymal stem cells (HUCMSCs) possess stem cell properties. In this study, we cultured HUCMSCs, and assessed the possibility of HUCMSCs differentiated into human male germ cells in vivo and in vitro, and find a new source of cells for the transplantation to the male infertility. Methods The ethics committee of our institution approved this study. HUCMSCs were isolated from the Wharton's jelly of the umbilical cord, clonally expanded. To investigate the capacity of differentiation in vitro, HUCMSCs were treated with human menopausal gonadotropinn (HMG) and retinoid acid (RA) in vitro. While investigate the capacity of differentiation in vivo, HUCMSCs were transplanted into the seminiferous tubules of busulfan-treated mice testes after labeled with pIRES2-EGFP or bromodeoxyuridine (BrdU). After induction in vitro, the morphologic changes of the differentiated cells were detected by phase contrast microscopy?Aelectron microscopy and transmission electron microscope?Gthe male germ cell markers were detected by immunohistochemistry, Western-blot and PT-PCR. HUCMSCs were also transplanted into the seminiferous tubules of the busulfan-treated mice by microinjection. To assess the fate of HUCMSCs in the testis, the survival?Amigration and germ cell markers of the HUCMSCs in the infertility mice testis were detected by immunohistochemistry?A immunofluorescence. Results HUCMSCs can express some some molecular markers of germ cells after induction. Immunohistochemistry revealed that HUCMSCs can survive in the mice testis at least 120 days, and they can migrate from the lumens to the basement membrane then to lumens again. Immunofluorescence showed that HUCMSCs can go further differentiation in the mice favorable testicular environment, and express the germ cell markers. Conclusions These suggested that HUCMSCs may differentiate into male germ cell-like cells after induced by HMG and RA in vitro; and it could survive also in a favorable testicular environment, may differentiate into germ cell lineages. This finding may provide a new strategy for the treatment of male infertility. Disclosures: No relevant conflicts of interest to declare.


Development ◽  
1996 ◽  
Vol 122 (4) ◽  
pp. 1291-1302 ◽  
Author(s):  
C. Albanesi ◽  
R. Geremia ◽  
M. Giorgio ◽  
S. Dolci ◽  
C. Sette ◽  
...  

In the postnatal testis, the c-kit transmembrane tyrosine-kinase receptor is expressed in type A spermatogonia, and its transcription ceases at the meiotic phase of spermatogenesis. Alternative, shorter c-kit transcripts are expressed in post-meiotic germ cells. These transcripts should encode a truncated version of the c-kit protein, lacking the extracellular, the transmembrane and part of the intracellular tyrosine-kinase domains. The 5′ end of the alternative c-kit transcripts maps within an intron of the mouse c-kit gene. We now show that this intron contains a promoter active in nuclear extracts of round spermatids, and that two discrete sequences upstream of the transcriptional start site bind spermatid-specific nuclear factors. Deletion of both these sequences abolishes activity of the promoter in vitro. We have also established that this promoter is functional in vivo, in a tissue-and cell-specific fashion, since intronic sequences drive the expression of the E. coli lacZ reporter gene in transgenic mice specifically in the testis. Transgene expression is confined to haploid germ cells of seminiferous tubules, starting from spermatids at step 9, and disappearing at step 13, indicating that cryptic promoter within the 16th intron of the mouse c-kit gene is active in a short temporal window at the end of the transcriptional phase of spermiogenesis. In agreement with these data, western blot experiments using an antibody directed against the carboxy-terminal portion of the mouse c-kit protein showed that a polypeptide, of the size predicted by the open reading frame of the spermatid-specific c-kit cDNA, accumulates in the latest stages of spermatogenesis and in epididymal spermatozoa. An immunoreactive protein of the same size can be produced in both eukaryotic and prokaryotic artificial expression systems.


Reproduction ◽  
2012 ◽  
Vol 144 (4) ◽  
pp. 495-503 ◽  
Author(s):  
Heikki T Turunen ◽  
Petra Sipilä ◽  
Leena Strauss ◽  
Ida Björkgren ◽  
Ilpo Huhtaniemi ◽  
...  

Bmyc is a member of the Myc family of transcriptional regulators in the mouse and the rat. It is predominantly expressed in hormonally controlled tissues, with highest level of expression in the epididymis. The BMYC protein has been shown to function as a transcription factor in vitro and to inhibit MYC. To study the significance of BMYC in vivo, a Bmyc knockout (KO) mouse model was generated by homologous recombination. The KO mice were viable and fertile and did not display gross morphological or histological changes compared to the WT mice. However, the testes and the epididymides of the KO mice were smaller than those of the WT mice. Correspondingly, a tendency for a lower sperm concentration in the cauda epididymides of the KO mice was detected. The testosterone produced/testis was significantly reduced, and accordingly, the LH levels were increased in the KO mice. Also, the expression levels of Myc and several of its target genes were elevated in the testes of prepubertal KO mice, whereas no differences in gene expression levels were detected in adult mice. Associated with the increased Myc expression, more apoptotic spermatogenic cells were detected in the seminiferous tubules of the KO mice. In conclusion, our data suggest that Bmyc is a regulator of Myc in vivo and that overexpression of Myc in the developing testis leads to increased apoptosis of spermatogenic cells.


2018 ◽  
Vol 9 (1) ◽  
pp. 4-11 ◽  
Author(s):  
Aparna Bansal ◽  
Himanshu

Introduction: Gene therapy has emerged out as a promising therapeutic pave for the treatment of genetic and acquired diseases. Gene transfection into target cells using naked DNA is a simple and safe approach which has been further improved by combining vectors or gene carriers. Both viral and non-viral approaches have achieved a milestone to establish this technique, but non-viral approaches have attained a significant attention because of their favourable properties like less immunotoxicity and biosafety, easy to produce with versatile surface modifications, etc. Literature is rich in evidences which revealed that undoubtedly, non–viral vectors have acquired a unique place in gene therapy but still there are number of challenges which are to be overcome to increase their effectiveness and prove them ideal gene vectors. Conclusion: To date, tissue specific expression, long lasting gene expression system, enhanced gene transfection efficiency has been achieved with improvement in delivery methods using non-viral vectors. This review mainly summarizes the various physical and chemical methods for gene transfer in vitro and in vivo.


Nanomaterials ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 180
Author(s):  
Maud Weiss ◽  
Jiahui Fan ◽  
Mickaël Claudel ◽  
Luc Lebeau ◽  
Françoise Pons ◽  
...  

With the growth of nanotechnologies, concerns raised regarding the potential adverse effects of nanoparticles (NPs), especially on the respiratory tract. Adverse outcome pathways (AOP) have become recently the subject of intensive studies in order to get a better understanding of the mechanisms of NP toxicity, and hence hopefully predict the health risks associated with NP exposure. Herein, we propose a putative AOP for the lung toxicity of NPs using emerging nanomaterials called carbon dots (CDs), and in vivo and in vitro experimental approaches. We first investigated the effect of a single administration of CDs on mouse airways. We showed that CDs induce an acute lung inflammation and identified airway macrophages as target cells of CDs. Then, we studied the cellular responses induced by CDs in an in vitro model of macrophages. We observed that CDs are internalized by these cells (molecular initial event) and induce a series of key events, including loss of lysosomal integrity and mitochondrial disruption (organelle responses), as well as oxidative stress, inflammasome activation, inflammatory cytokine upregulation and macrophage death (cellular responses). All these effects triggering lung inflammation as tissular response may lead to acute lung injury.


2021 ◽  
Vol 22 (3) ◽  
pp. 1147
Author(s):  
Noy Bagdadi ◽  
Alaa Sawaied ◽  
Ali AbuMadighem ◽  
Eitan Lunenfeld ◽  
Mahmoud Huleihel

Pigment epithelium derived factor (PEDF) is a multifunctional secretory soluble glycoprotein that belongs to the serine protease inhibitor (serpin) family. It was reported to have neurotrophic, anti-angiogenic and anti-tumorigenic activity. Recently, PEDF was found in testicular peritubular cells and it was assumed to be involved in the avascular nature of seminiferous tubules. The aim of this study was to determine the cellular origin, expression levels and target cells of PEDF in testicular tissue of immature and adult mice under physiological conditions, and to explore its possible role in the process of spermatogenesis in vitro. Using immunofluorescence staining, we showed that PEDF was localized in spermatogenic cells at different stages of development as well as in the somatic cells of the testis. Its protein levels in testicular homogenates and Sertoli cells supernatant showed a significant decrease with age. PEDF receptor (PEDF-R) was localized within the seminiferous tubule cells and in the interstitial cells compartment. Its RNA expression levels showed an increase with age until 8 weeks followed by a decrease. RNA levels of PEDF-R showed the opposite trend of the protein. Addition of PEDF to cultures of isolated cells from the seminiferous tubules did not changed their proliferation rate, however, a significant increase was observed in number of meiotic/post meiotic cells at 1000 ng/mL of PEDF; indicating an in vitro differentiation effect. This study may suggest a role for PEDF in the process of spermatogenesis.


2000 ◽  
Vol 74 (5) ◽  
pp. 1044-1046 ◽  
Author(s):  
Jan Tesarik ◽  
Natalio Cruz-Navarro ◽  
Eduardo Moreno ◽  
Maria Teresa Cañete ◽  
Carmen Mendoza
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document