scholarly journals On the variability in static and cyclic mechanical properties of extruded 7075-T6 aluminum alloy

Author(s):  
Matteo Benedetti ◽  
Cinzia Menapace ◽  
Vigilio Fontanari ◽  
Ciro Santus

The present paper investigates the variability in the static and cyclic properties of two nominally identical supplies of the aeronautical Al grade 7075-T6. Samples were extracted from extruded bars of 15 mm and 60 mm diameter and with slightly different chemical composition. Noticeable differences were found in tensile strength, total elongation, low- and high-cycle fatigue strength, despite the nearly identical hardness value. The diverse mechanical behavior has been imputed to different extrusion ratio and therefore work hardening along with a more or less fine distribution of precipitates and dispersoids. The high-cycle fatigue strength was found to be in direct correlation with the monotonic yield strength and the size of the largest intermetallic precipitate. A simple equation based on Murakami sqrt(area) parameter is proposed to predict the fatigue endurance. Tensile tests and microstructural analyses are recommended instead of conventional hardness tests to have a tighter quality control on the mechanical properties of semifinished products.

2010 ◽  
Vol 139-141 ◽  
pp. 180-184
Author(s):  
Yong Xue ◽  
Zhi Min Zhang ◽  
Li Hui Lang

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75) and extrusion temperatures (300°C, 330°C, 360°C, 390°C, 420°C) on the mechanical properties and microstructure of homogenized AZ80 alloy have been investigated through the tensile tests and via metallographic microscope observation. The results show that the alloy’s grain is small and small amounts of black hard and brittle second-phase β (Mg17Al12) are precipitated uniformly along the grain boundary causing the gradual increase of the alloy’s tensile strength at 330°C. When the extrusion temperature is up to 390°C, the grain size increases significantly, but the second phase precipitation along grain boundaries transforms into continuous and uniform-distribution precipitation within the grain. In this case, when the extrusion ratio is 60, the alloy’s tensile strength reaches its peak 390Mpa. As the extrusion temperature increases, inhomogeneous precipitation of the second-phase along grain boundaries increases, causing the decrease of the alloy’s strength. At the same temperature, the tensile strength increases firstly and then decreases as extrusion ratio increases. With the gradual increase of the refinement grain, the dispersed precipitates increase and the alloy’s tensile strength and plasticity reach their peaks when the extrusion temperature is 390°C. As the grain grows, the second phase becomes inhomogeneous distribution, and the alloy’s strength and plasticity gradually decrease.


Metals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 1023 ◽  
Author(s):  
Byung-Hoon Lee ◽  
Sung-Woo Park ◽  
Soong-Keun Hyun ◽  
In-Sik Cho ◽  
Kyung-Taek Kim

The effect of heat treatment condition on non-Cu AA7021 alloy was investigated with respect to mechanical properties and very high cycle fatigue behavior. With a focus on the influence of heat treatment, AA7021 alloy was solution heat-treated at 470 °C for 4 h and aged at 124 °C. Comparing the results of solution-treated and peak-aged AA7021 alloy shows a significant increase in Vickers hardness and tensile strength. The hardness of AA7021 alloy was increased by 65% after aging treatment, and both tensile strength and yield strength were increased by 50~80 MPa in each case. In particular, this paper investigated the very high cycle fatigue behavior of AA7021 alloy with the ultrasonic fatigue testing method using a resonance frequency of 20 kHz. The fatigue results showed that the stress amplitude of peak-aged AA7021 alloy was about 50 MPa higher than the solution-treated alloy at the same fatigue cycles. Furthermore, it was confirmed that the size of the crack initiation site was larger after peak aging than after solution treatment.


2014 ◽  
Vol 529 ◽  
pp. 237-241
Author(s):  
Juan Jia ◽  
Shuang Xin Liu ◽  
Dierk Rabbe

The mechanical properties of the rolled isotactic polypropylene and the morphology of fracture surfaces were measured and observed by tensile tests and the scanning electron microscopy. And then the tensile fracture behaviors along the rolling and transvers directions of the rolled samples were analyzed. After rolling, strong anisotropy mechanical properties occurred along the rolling and transverse directions: high tensile strength with low total elongation along the rolling direction and low tensile strength with high total elongation along the transverse direction. After tensile test, three characteristic structures were found on the fracture surfaces. The tensile fracture behavior of the rolled samples is: stress concentration happens on the edge of tensile sample and then fracture develops to the center part of the tensile sample. When the fracture is big enough, the tensile sample will be failed very quickly.


2012 ◽  
Vol 715-716 ◽  
pp. 579-584 ◽  
Author(s):  
Dagoberto Brandao Santos ◽  
Berenice Mendonça Gonzalez ◽  
Elena V. Pereloma

ncreasing demand for automotive vehicles with reduced weight, improved crashworthiness and passengers safety has steamed the research of new Twinning Induced Plasticity (TWIP) steels. In this work the effect of annealing between 400 and 900°C on the microstructure and mechanical properties of hot and cold rolled 0.06C-24Mn-3Al-2Si-1Ni (wt%) steel with TWIP effect was investigated. The results have shown that steel exhibits fast recrystallization kinetics with a low amount of recovery, which results in a high driving force for the former. Mechanical properties were determined using Vickers microhardness and tensile tests. Tensile strength of 670 MPa with 54% of total elongation, and strain hardening exponent of 0.57 were reached after annealing at 900°C.


Author(s):  
Osita Obiukwu ◽  
Henry Udeani ◽  
Progress Ubani

The effect of various heat treatment operations (annealing, normalizing, tempering) on mechanical properties of 0.35% carbon steel was investigated. The change in the value of endurance limit of the material as a result of the various heat-treatment operations were studied thoroughly. It was found that the specimens tempered at low temperature (200°C) exhibited the best fatigue strength. Microscope was used to characterize the structural properties resulting from different heat treatment processes. The results from the tensile tests impact tests and hardness tests showed that the mechanical properties variate at every heat-treatment conditions. The microstructure of differently heat-treated steels was also studied.


2010 ◽  
Vol 148-149 ◽  
pp. 332-337 ◽  
Author(s):  
Yong Xue ◽  
Zhi Min Zhang ◽  
Li Hui Lang

In the present research, the influences of different extrusion ratios (15, 30, 45, 60, and 75), extrusion temperatures (300 , 340 , 380 , 420 , and 460 ), and subsequent heat treatment on the mechanical properties and microstructure of as-cast ZK60 magnesium alloy have been investigated through the tensile tests and via metallographic observation. The results show that forward extrusion process can refine the microstructure of as-cast ZK60 alloy effectively. If as-cast ZK60 alloys have been extruded with the extrusion ratio 45 at 380 ,420 and 460 , respectively, and then post-heat treatment was conducted, the ZK60 alloy’s strength is higher under T5 than T6 treatment. For as-cast ZK60 alloy processed by extrusion and T5 method, the most appropriate temperature for extrusion processing is 300 , at which its tensile strength are highest provided the extrusion ratio is 30 but yet its plasticity is best provided the extrusion ratio is 45. If forward extrusions were conducted at 380 , mechanical properties of ZK60 alloy have little difference as the extrusion ratio varies. When T6 treatment was conducted for the extruded bars, their mechanical properties were improved little, moreover, the bigger the extrusion ratio is, the higher the tensile strength and elongation of the extruded bars become.


2013 ◽  
Vol 685 ◽  
pp. 259-263 ◽  
Author(s):  
K. Subbaiah ◽  
Geetha Manivasagam ◽  
B. Shanmugarajan ◽  
S.R. Koteswara Rao

Laser beam welding of aluminum alloys is expected to offer good mechanical properties of welded joints. In this experimental work reported, CO2 laser beam welding at 3.5 kW incident power was conducted autogenously on 5 mm thick 5083-H321 aluminum alloy plates at different welding speeds. The mechanical properties and microstructural characteristics of the welds are evaluated through tensile tests, micro-hardness tests, optical microscopy and scanning electron microscopy (SEM). Both yield stress and tensile strength of the laser beam welded joint at the optimum welding speed were 88 % of base metal values. Experimental results indicate that the tensile strength and hardness of laser beam welds are affected by the variation of the intermetallic compounds.


2017 ◽  
Vol 17 (4) ◽  
pp. 179-184
Author(s):  
Xuesong Fu ◽  
Yan Yang ◽  
QuanYang Ma ◽  
Xiaodong Peng ◽  
Tiancai Xu

AbstractMg-0.5Si-xSn (x=0.95, 2.9, 5.02wt.%) alloys were cast and extruded at 593K (320oC) with an extrusion ratio of 25. The microstructure and mechanical properties of as-cast and extruded test alloys were investigated by OM, SEM, XRD and tensile tests. The experimental results indicate that the microstructure of the Mg-0.5Si-xSn alloys consists of primary α-Mg dendrites and an interdendritic eutectic containing α-Mg, Mg2Si and Mg2Sn. There is no coarse primary Mg2Si phase in the test alloys due to low Si content. With the increase in the Sn content, the Mg2Si phase was refined. The shape of Mg2Si phase was changed from branch to short bar, and the size of them were reduced. The ultimate tensile strength and yield strength of Mg-0.52Si-2.9Sn alloy at the temperature of 473K (200oC) reach 133MPa and 112MPa respectively. Refined eutectic Mg2Si phase and dispersed Mg2Sn phase with good elevated temperature stability are beneficial to improve the elevated temperature performance of the alloys. However, with the excess addition of Sn, large block-like Mg2Sn appears around the grain boundary leading to lower mechanical properties.


Sign in / Sign up

Export Citation Format

Share Document