scholarly journals β-Caryophyllene inhibits monoacylglycerol lipase activity and increases 2-AG levels: a new mechanism of endocannabinoid-mediated analgesia?

Author(s):  
Jost Klawitter ◽  
Weibke Weissenborn ◽  
MacKenzie Walz ◽  
Jelena Klawitter ◽  
Matthew Jackson ◽  
...  

Introduction. β-Caryophyllene (BCP) has been shown to be an effective anti-inflammatory agent in chronic and inflammatory pain models. Since limited data are available for BCP in acute pain, we tested efficacy of BCP in an acute post-surgical pain model. Methods. BCP was tested in an acute postsurgical pain model. Animals were treated with vehicle, 10, 25, 50 and 75 mg/kg BCP that was injected intra-peritoneally (i.p.). Time dependent paw withdrawal response (PWR) were evaluated using von Frey filaments and plasma and tissue samples were taken. BCP levels were determined in tissue (paw and spine) and plasma using an HPLC-MS based approach. Endocannabinoids (2-arachidonoylglycerol) were also evaluated in plasma and tissues using an HPLC-MS based approach. Monoacylglycerol lipase (MAGL) activity was evaluated in-vitro as well as ex vivo. Results. A dose-dependent improvement of hyperalgesia was observed up to 85% of the baseline value 30 minutes after administration of the highest BCP dose of 75 mg/kg. A BCP dose-dependent increase in the 2-arachidonoylglycerol (2-AG) levels was observed with 9.9 ± 6.4 ng/mL in the 75 mg/kg dose group as compared to vehicle controls with 3.0 ± 2.5 ng/mL. In vitro MAGL enzyme activity assessment using 2-AG as the substrate revealed an IC50 of 7.4 µM of BCP for MAGL inhibition. Conclusion. These data showed that BCP inhibits MAGL activity in-vitro and in-vivo causing 2-AG levels to rise. Since the endocannabinoid 2-AG is a CB1 and CB2 receptor agonist, we propose the 2-AG-mediated cannabinoid receptor activation may contribute to BCP’s mechanism of analgesia.

2000 ◽  
Vol 83 (05) ◽  
pp. 752-758 ◽  
Author(s):  
Claude Le Feuvre ◽  
Annie Brunet ◽  
Thuc Do Pham ◽  
Jean-Philippe Metzger ◽  
André Vacheron ◽  
...  

SummaryThe 3-morpholinosydnonimine (SIN-1) generates both nitric oxide (NO) and superoxide anion (O2−). It elicits dose-dependent vasodilation in vivo, in spite of the opposite effects of its breakdown products on vascular tone and platelet aggregation.This study was designed to investigate the influence of intravenous SIN-1 injection on platelet Ca2+ handling in patients undergoing coronary angiography. SIN-1 administration reduced cytosolic [Ca2+] in unstimulated platelets by decreasing Ca2+ influx. It attenuated Ca2+ mobilization from internal stores evoked by thrombin or thapsigargin. In vitro studies were used as an approach to investigate how simultaneous productions of NO and O2− from SIN-1 modify thrombin- or thapsigargin-induced platelet Ca2+ mobilization. Superoxide dismutase, the O2− scavenger, enhanced the capacity of SIN-1 to inhibit Ca2+ mobilization but catalase had no effect.This suggests that the effects of SIN-1 on platelet Ca2+ handling resemble those of NO, but are modulated by simultaneous O2− release, independently of H2O2 formation.


1990 ◽  
Vol 126 (2) ◽  
pp. 333-340 ◽  
Author(s):  
S. R. Page ◽  
A. H. Taylor ◽  
W. Driscoll ◽  
M. Baines ◽  
R. Thorpe ◽  
...  

ABSTRACT The mechanism by which monoclonal antibodies enhance the biological activity of a number of hormones is poorly understood. One such antibody (GC73), which binds to human but not bovine TSH, enhances the bioactivity of human TSH in vivo. We have investigated whether GC73 enhancement of TSH bioactivity involves potentiation of hormone-receptor activation assessed by the cyclic AMP (cAMP) responses of both primary human thyrocyte cultures and a TSH-responsive human thyrocyte cell line (SGHTL-45). GC73 had no effect on basal cAMP production. In contrast to its enhancement of the bioactivity of human TSH in vivo, it markedly inhibited the cAMP response to 1 and 10 mU human TSH/ml in primary thyrocytes. This effect was dose-dependent with neutralization of the bioactivity of TSH occurring at 2 mg GC73/ml. GC73 had no effect on the bioactivity of bovine TSH. In contrast, a second anti-TSH monoclonal antibody (TC12), which binds to both human and bovine TSH, inhibited the bioactivity of both species of TSH. Similar results were obtained using SGHTL-45 cells, although the peak concentrations of cAMP were lower. We conclude that binding of GC73 to human TSH resulted in inhibition rather than enhancement of the in-vitro biological activity of human TSH. We suggest that GC73 enhancement of human TSH bioactivity seen in vivo does not result from a mechanism involving potentiation of receptor activation by human TSH. Journal of Endocrinology (1990) 126, 333–340


2014 ◽  
Vol 32 (4_suppl) ◽  
pp. 96-96
Author(s):  
Renee de Leeuw ◽  
Clay de Comstock ◽  
Daniela de Pollutri ◽  
Matthew Joseph Schiewer ◽  
Stephen J Ciment ◽  
...  

96 Background: Loss of retinoblastoma (RB) tumor suppressor is overrepresented in castrate-resistant prostate cancer (CRPC) compared to primary PCa. We previously showed using analyses of human tissue and in vitro and in vivo modeling that RB constrains androgen receptor (AR) function, and that loss of RB is sufficient promote resistance to castration and AR antagonists. Thus, novel strategies are needed to treat RB-deficient tumor. By contrast, in tumors retaining RB, suppressing enhancing RB activity would be of therapeutic advantage, and may be accomplished through next-generation Cdk4/6 inhibitors. Methods: Stable isogenic pairs of prostate cancer cell lines either retaining RB or RB depleted (by shRNA) were assessed in vitro and in xenografts for response to Cdk4/6 kinase inhibitors or the cabazitaxel. In addition, using an ex vivo explant assay, fresh tumor tissue samples from radical prostatectomy were exposed to the Cdk4/6 inhibitor or cabazitaxel for up to 7 days, and evaluated by IHC for Ki67, Caspase-3, and AR. Results: Cdk4/6 inhibition blocks tumor cell proliferation dependent on RB status. This was further confirmed ex vivo, as evidenced by a marked reduction in Ki67 staining in Cdk4/6 inhibitor treated explant tissue from two prostate cancer patients. Conversely, in vitro studies revealed a modest sensitization of RB-depleted tumors to cabazitaxel that was dramatically enhanced in vivo and after castration. Cabazitaxel, like docetaxel, targets the cell architecture and induces cell death, but also induces a distinct gene expression profile that may partially explain efficacy in docetaxel-resistant tumors. Neither taxane showed affects on AR nuclear localization using in vivoor explant studies. Conclusions: These results strongly support our hypothesis that RB status can be used as a metric to define therapeutic response to cabazitaxel, as such that loss of RB function induces sensitization taxanes, whereas RB proficient tumors give an enhanced response to Cdk4/6 kinase inhibitors.


Blood ◽  
1993 ◽  
Vol 82 (2) ◽  
pp. 536-543
Author(s):  
GB Faguet ◽  
JF Agee

The common B-chronic lymphocytic leukemia (B-CLL) antigen (cCLLa) appears to be ideal for targeted immunotherapy in that it is the most prevalent and disease-restricted marker in B-CLL. To assess this potential, we developed four immunotoxins (ITs) of anti-cCLLa monoclonal antibody CLL2m (an IgG2a kappa), using ricin chain A (RTA) or its deglycosylated derivative (dgA), each conjugated to either the whole IgG molecule or its Fab' fragment. Each IT was tested in vitro for specificity and cytotoxic activity (assessed by protein synthesis inhibition [PSI] and by cell kill [CK] in the clonogenic assay) against B-CLL cells. RTA-based anti-CD5 ITs and enriched normal B and T lymphocytes were used as controls. Each IT exhibited antigen-specific, dose-dependent activity. Thus, whereas B-CLL cells exhibited dose- dependent PSI and CK (whether the B-CLL clone was CD5+ or CD5-), normal B (cCLLa-/CD5-) and T lymphocytes (cCLLa-/CD5+) remained unaffected. IT potency was independent of toxin glycosylation, but was slightly influenced by antibody valence; divalent ITs were twice as potent as monovalent ITs (IC50, 2.3 v 7.1 x 10(-11) mol/L; CK, 2.6- v 2.0-log reached with 524 v 1,072 IT molecules bound/cell, respectively). In the presence of ammonium chloride or Verapamil, IT-induced CK was enhanced 10- to 80-fold. These data suggest that the cCLLa is a promising target for IT-based immunotherapy of B-CLL in vivo and ex vivo.


2020 ◽  
Vol 22 (Supplement_2) ◽  
pp. ii100-ii101
Author(s):  
Tobey MacDonald ◽  
Anshu Malhotra ◽  
Jingbo Liu ◽  
Hongying Zhang ◽  
Matthew Schneiderjan ◽  
...  

Abstract Treatment for medulloblastoma (MB) is typically ineffective for MYC amplified or metastatic SHH, Group 3 and 4 subgroups. Promising preclinical and clinical results have been obtained for adult and pediatric malignant glioma treated with ONC-201, a selective antagonist of DRD2, a G-protein coupled receptor that regulates prosurvival pathways. Herein, we report the activity of ONC-201 and ONC-206, which has increased non-competitive antagonism of DRD2, against MB. We treated three different MB cell types representative of SHH- and Group 3-like cells, with varied levels of DRD2 expression, and consistently observed increased cell death in a dose-dependent manner at lower doses of ONC-206 compared to ONC-201. We also evaluated ClpP as an additional drug target in MB. ClpP is a mitochondrial protease that has been shown to directly bind and be activated by ONC 201, and is highly expressed at the protein level across pediatric MB, malignant glioma and ATRT, but not normal brain. We observed that similar to ONC-201, ONC-206 treatment of MB cells induces the restoration of mitochondrial membrane potential to the non-proliferative state, degradation of the mitochondrial substrate SDHB, reduction in survivin and elevation in ATF4 (integrated stress response). Importantly, ONC-206 treatment induced significant cell death of patient-derived SHH, WNT, and Group 3 tumors ex vivo and Group 4 cells in vitro, while having no observable toxicity in normal brain. ONC-206 treatment of a transgenic mouse model of Shh MB in vivo significantly reduces tumor growth and doubles survival time in a dose-dependent manner following 2 weeks of therapy. Additional in vivo data will be reported in preparation for a planned Phase I study of ONC-206 in children with malignant brain tumors.


eLife ◽  
2016 ◽  
Vol 5 ◽  
Author(s):  
Joyonna Carrie Gamble-George ◽  
Rita Baldi ◽  
Lindsay Halladay ◽  
Adrina Kocharian ◽  
Nolan Hartley ◽  
...  

Mood and anxiety disorders are the most prevalent psychiatric conditions and are exacerbated by stress. Recent studies have suggested cyclooxygenase-2 (COX-2) inhibition could represent a novel treatment approach or augmentation strategy for affective disorders including anxiety disorders and major depression. We show that traditional COX-2 inhibitors and a newly developed substrate-selective COX-2 inhibitor (SSCI) reduce a variety of stress-induced behavioral pathologies in mice. We found that these behavioral effects were associated with a dampening of neuronal excitability in the basolateral amygdala (BLA) ex vivo and in vivo, and were mediated by small-conductance calcium-activated potassium (SK) channel and CB1 cannabinoid receptor activation. Taken together, these data provide further support for the potential utility of SSCIs, as well as traditional COX-2 inhibitors, as novel treatment approaches for stress-related psychiatric disorders.


2008 ◽  
Vol 101 (3) ◽  
pp. 317-321 ◽  
Author(s):  
Pierre Maurois ◽  
Nicole Pages ◽  
Pierre Bac ◽  
Michèle German-Fattal ◽  
Geneviève Agnani ◽  
...  

Magnesium deficiency may be induced by a diet impoverished in magnesium. This nutritional deficit promotes chronic inflammatory and oxidative stresses, hyperexcitability and, in mice, susceptibility to audiogenic seizures. Potentiation by low-magnesium concentrations of the opening of N-methyl-d-aspartate (NMDA) receptor/calcium channel in in vitro and ex vivo studies, and responsiveness to magnesium of in vivo brain injury states are now well established. By contrast, little or no specific attention has been, however, paid to the in vivo NMDA receptor function/excitability in magnesium deficiency. The present work reports for the first time that, in mice undergoing chronic nutritional deprivation in magnesium (35 v. 930 parts per million for 27 d in OF1 mice), NMDA-induced seizure threshold is significantly decreased (38 % of normal values). The attenuation in the drop of NMDA seizure threshold (percentage of reversal) was 58 and 20 % upon acute intraperitoneal administrations of magnesium chloride hexahydrate (28 mg magnesium/kg) and the antioxidant ebselen (20 mg/kg), respectively. In nutritionally magnesium-deprived animals, audiogenic seizures are completely prevented by these compound doses. Taken as a whole, our data emphasise that chronic magnesium deprivation in mice is a nutritional in vivo model for a lowered NMDA receptor activation threshold. This nutritional model responds remarkably to acute magnesium supply and moderately to acute antioxidant administration.


Blood ◽  
2005 ◽  
Vol 106 (11) ◽  
pp. 1876-1876
Author(s):  
Jawed Fareed ◽  
D. Hoppensteadt ◽  
W. Haque ◽  
J. Diakur ◽  
W. Jeske ◽  
...  

Abstract Background: The pathogenesis of thrombosis involves both cellular and humoral processes. Most antithrombotic drugs exhibit either anti-protease or anti-platelet effects. A combination of anti-protease and anti-platelet drugs provides better efficacy in the management of thrombotic disorders. A series of synthetic low molecular weight serine protease inhibitors with varying anti-platelet effects (Medicure Inc.) are being assessed for antithrombotic properties. Materials and Methods: This investigation reports on a compound with low antithrombin/high anti-platelet activity MC 45301 (A) and a compound with high antithrombin/low anti-platelet activity MC 45308 (B) activity in in-vitro and in-vivo settings used to profile antithrombotic drugs. Results: A exhibited strong anti-platelet actions as measured using ADP as an agonist (IC50=1.1 g/ml), whereas B had a higher IC50 (9.4 g/ml). In the antithrombin titration assay A (>100 μg/ml) showed a relatively higher IC50 than B (45 μg/ml). In the global anticoagulant assays, A exhibited somewhat weaker effects than B. In the Xa generation assay, both compounds exhibited similar effects. However, in the thrombin generation assays B exhibited stronger effects. In whole blood assays both compounds produced anticoagulant and anti-platelet effects. Intravenous administration of these compounds to rabbits over a dose range of 50–500 g/kg produced strong dose dependent antithrombotic actions. In comparison to direct antithrombin agents such as argatroban, at a comparable dose, B produced identical antithrombotic actions, which were disproportional to the systemic anticoagulant effects. A produced modest antithrombotic actions with minimal ex vivo clotting effects. This data is highly suggestive that compounds with dual targets are able to produce stronger antithrombotic actions relative to monotherapeutic agents. Additional studies in arterial thrombosis may provide newer insights into the antithrombotic actions of compounds with dual sites of action. Moreover, these agents may be more effective in thrombotic conditions where both platelets and the coagulation system are involved.


2019 ◽  
Vol 8 (3) ◽  
pp. 4-10 ◽  
Author(s):  
N. N. Petrishchev ◽  
M. A. Galkin ◽  
T. G. Grishacheva ◽  
I. N. Dementjeva ◽  
S. G. Chefu

The goal of the study is to evaluate the effect of Radachlorin (OOO “RADA-PHARMA”, Russia) (RC) on platelet aggregation in ex vivo and in vivo experiments. The experiments were conducted on male Wistar rats. Platelet aggregation activity was determined in platelet-rich plasma (PRP) using a turbidimetric method and the aggregation inducer was ADP at a final concentration of 1.25 μM. PRP samples containing RC were irradiated with ALOD-Granat laser device (OOO “Alkom Medika”, Russia) at 662 nm wavelength with 0.05 W/cm2 power density. After a 5-minute incubation of PRP with RC in the dark, dose-dependent inhibition of platelet aggregation was observed. Laser irradiation (12.5 J/cm2 and, especially, 25 J/cm2) increased the inhibitory effect of RC. 3 hours after intravenous administration of RC, the rate and intensity of platelets aggregation did not change, while disaggregation slowed down significantly. Irradiation at a dose of 5 J/cm2 did not affect the platelets aggregation kinetics, and disaggregation slowed down even more at 10 J/cm2, and at 20 J/cm2 the rate and intensity of platelets aggregation decreased, and no disaggregation occurred.In vitro, RC inhibited the ADP-induced platelet aggregation in rats in a dose-dependent manner; after laser irradiation, this effect was enhanced significantly. The effect of RC on circulating platelets leads to a change in their functional state, which manifests in slowing down the disaggregation after exposure to ADP. After laser irradiation (10 J/cm2 and, especially, 20 J/cm2), the severity of the functional changes increases. The role of decreasing the disaggregation activity of platelets in the mechanism of vascular thrombosis in the affected area of photodynamic therapy (PDT) is discussed.


Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 3735-3735
Author(s):  
Lee O’Neill ◽  
Yung-Wei Pan ◽  
Amy M. Skinner ◽  
Peter Kurre

Abstract Preclinical evidence and clinical trials speak to the therapeutic potential of retrovirus vectors for the heritable genetic modification of cells. Careful evaluation of the antecedent risks is critical to move these applications forward. Others previously demonstrated the persistence of intact vector particles on the surface of target cells. Inadvertent particle transfer after in vivo applications could lead to the transduction of bystander tissues, or provoke immunological responses. We recently demonstrated prolonged adherence of VSV-G pseudotyped, HIV-1 derived lentivirus particles after ex vivo transduction culture of murine hematopoietic target cells (1°) with subsequent transduction of secondary (2°) targets in vitro and in vivo. Extended particle adherence is independent of Env pseudotype and routine wash procedures (Pan et al., J Virol. Jan 2007). We hypothesized that unwanted carryover could be minimized by disrupting the vector particle attachment to 2° cells while maintaining uptake to 1° targets. Initial studies indicated that the transduction of 1° targets at 4°C (to prevent uptake) for up to 6 hours followed by serial PBS washes and subsequent direct co-culture with fibroblasts resulted in undiminished 2° gene transfer compared to transduction at 37°C. Conversely, post-transduction exposure to escalating concentrations of citric acid resulted in a systematic decrease in both 1° and 2° gene transfer rates. This is consistent with separable mechanisms for pH sensitive VSV-G mediated uptake of particles in 1° targets and the receptor independent attachment responsible for carryover and 2° transduction, respectively. Glycosaminoglycans, including heparin, quantitatively bind to pseudotyped vector particles. We found that exposure of particles to heparin effectively abrogated subsequent transduction of cells by disrupting attachment. Remarkably, serial heparin washes at the conclusion of transduction had only minimal effects on gene transfer to 1° targets, but resulted in a two-log reduction in 2° gene transfer. Increases in the concentration of protamine sulfate (a polycation) during transduction partly reversed the effect of heparin (a polyanion), demonstrating the residual impact of electrostatic interactions on attachment of retrovirus particles from the 1° cell. In further studies we showed that trypsin washes following vector exposure incompletely cleaved 1° cell surface bound particles while pronase effectively degraded cell surface bound particles in a dose dependent manner, abrogating carryover. Because pronase at high concentrations also compromised cell surface epitope integrity we studied the expression of chemokine receptor (CXCR) 4, both a critical mediator of progenitor cell homing to the bone marrow and a representative protease-sensitive surface molecule. These experiments revealed a dose dependent degradation of CXCR4 on the cell surface of 1° target cells and rapid regeneration within three hours, critical for applications involving the injection of ex vivo modified hematopoietic cells. In conclusion, our results demonstrate that select wash procedures can disrupt the ability of virus particles to bind secondary targets, degrade residual surface bound particles and reduce gene transfer to inadvertent 2° targets in vitro by up to 99%. These studies are important first steps in understanding and limiting inadvertent carryover in the context of gene therapy while maximizing target cell transduction.


Sign in / Sign up

Export Citation Format

Share Document