scholarly journals Using multi-marker DNA metabarcoding to reveal the diet of a scarce woodland bird

Author(s):  
Ewan Stenhouse ◽  
Paul Bellamy ◽  
Will Kirby ◽  
Ian Vaughan ◽  
Lorna Drake ◽  
...  

Understanding the role diet plays in the structure of food webs is vital, and dietary knowledge is key for conservation management success. There is limited knowledge of the diets of woodland bird species, due largely to difficulties in accurately identifying plant and invertebrate taxa being consumed. Here, we show the effectiveness of multi-marker faecal metabarcoding to provide the most in-depth dietary analysis of a generalist passerine, the Hawfinch (Coccothraustes coccothraustes, Linnaeus), to date. Faecal samples were obtained from 2016-2019 from Hawfinch populations prior to and during the breeding season throughout the UK. DNA was extracted from 263 samples and amplified using Internal Transcribed Spacer 2 (ITS2) and cytochrome C oxidase subunit I (COI) barcodes. Using high-throughput sequencing (HTS), we identified 49 and 97 ITS2 and COI zero radius operational taxonomic units (zOTUs) respectively which equated to reputed dietary items. The herbivorous element of Hawfinch diet was dominated by naturally occurring taxa such as beech (Fagus sylvatica, Linnaeus), hornbeam (Carpinus betulus, Linnaeus) and oak (Quercus sp., Linnaeus). The most taxon rich and commonly recorded invertebrate taxon identified was Lepidoptera. We found Hawfinch diet varied spatially, as well as between sexes. Hawfinch showed broad dietary plasticity and utilised multiple resources within their foraging environments. Our study shows the potential of multi-marker DNA metabarcoding to reveal subtle dietary differences, but also highlights the challenges of studying omnivorous species using metabarcoding methods.

2021 ◽  
Author(s):  
Katie Bull ◽  
Gareth Davies ◽  
Timothy Patrick Jenkins ◽  
Laura Elizabeth Peachey

Abstract BackgroundChanges to the gut microbiota are associated with an increased incidence of disease in many species. This is particularly important during the process of domestication, where captive animals commonly suffer from gastrointestinal (GI) pathology. Horses are a prime example of a species which suffers from a high incidence of (often life-threatening) GI diseases in domesticated environments. We aimed to indentify the gut microbial changes which occur due to domestication in horses by profiling the faecal microbiota of adult female Exmoor ponies under three management conditions, representing increasing levels of domestication.MethodsFaecal samples were collected from 29 adult female Exmoor ponies in the South West of the UK; ponies were categorised as Feral (n=10), Semi-Feral (n=10) and Domesticated (n=9), based on their management conditions; thus controlling for age, gender and random effects between groups. Diet and medication were recorded and faecal samples taken to assess parasite infection. Faecal microbial composition was profiled via high-throughput sequencing of the bacterial 16S rRNA gene.ResultsDownstream biostatistical analysis indicated profound step-wise changes in global microbial community structure in the transition from Feral to Semi-Feral to Domesticated groups. A relatively high abundance of members of the phylum Proteobacteria and Tenericutes were associated with the Domesticated group; and higher levels of Methanobacteria were seen in the Feral group. The Semi-Feral group frequently had intermediate levels of these taxa; however, they also exhibited the greatest ‘within group’ variation in bacterial diversity and parasites burdens. Functional predictions revealed increased amino acid and lipid metabolism in the Domesticated group and increased energy metabolism in the Feral group; supporting a hypothesis that differences in diet was the key driver of gut microbial composition. ConclusionsIf assumed the Feral population has a more natural gut microbial phenotype, akin to that with which horses have evolved, these data can potentially be used to provide microbial signitures of balanced gut homeostasis in horses; which, in turn, will aid prevention of GI disease in domesticated horses.


2018 ◽  
Vol 2 ◽  
pp. e22467 ◽  
Author(s):  
Timothy Lee ◽  
Yohannes Alemseged ◽  
Andrew Mitchell

The introduction of domesticated animals into new environments can lead to considerable ecological disruption, and it can be difficult to predict their impact on the new ecosystem. In this study, we use faecal metabarcoding to characterize the diets of three ruminant taxa in the rangelands of south-western New South Wales, Australia. Our study organisms included goats (Capraaegagrushircus) and two breeds of sheep (Ovisaries): Merinos, which have been present in Australia for over two hundred years, and Dorpers, which were introduced in the 1990s. We used High-Throughput Sequencing methods to sequence therbcLand ITS2 genes of plants in the faecal samples, and identified the samples using the GenBank and BOLD online databases, as well as a reference collection of sequences from plants collected in the study area. We found that the diets of all three taxa were dominated by the family Malvaceae, and that the Dorper diet was more diverse than the Merino diet at both the family and the species level. We conclude that Dorpers, like Merinos, are potentially a threat to some vulnerable species in the rangelands of New South Wales.


2021 ◽  
Vol 9 (3) ◽  
pp. 659
Author(s):  
Elias Asimakis ◽  
Panagiota Stathopoulou ◽  
Apostolis Sapounas ◽  
Kanjana Khaeso ◽  
Costas Batargias ◽  
...  

Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.


Fuels ◽  
2021 ◽  
Vol 2 (2) ◽  
pp. 241-252
Author(s):  
Dyah Asri Handayani Taroepratjeka ◽  
Tsuyoshi Imai ◽  
Prapaipid Chairattanamanokorn ◽  
Alissara Reungsang

Extreme halophiles offer the advantage to save on the costs of sterilization and water for biohydrogen production from lignocellulosic waste after the pretreatment process with their ability to withstand extreme salt concentrations. This study identifies the dominant hydrogen-producing genera and species among the acclimatized, extremely halotolerant microbial communities taken from two salt-damaged soil locations in Khon Kaen and one location from the salt evaporation pond in Samut Sakhon, Thailand. The microbial communities’ V3–V4 regions of 16srRNA were analyzed using high-throughput amplicon sequencing. A total of 345 operational taxonomic units were obtained and the high-throughput sequencing confirmed that Firmicutes was the dominant phyla of the three communities. Halanaerobium fermentans and Halanaerobacter lacunarum were the dominant hydrogen-producing species of the communities. Spatial proximity was not found to be a determining factor for similarities between these extremely halophilic microbial communities. Through the study of the microbial communities, strategies can be developed to increase biohydrogen molar yield.


2021 ◽  
pp. 1-10
Author(s):  
Micheline Carvalho-Silva ◽  
Luiz Henrique Rosa ◽  
Otávio H.B. Pinto ◽  
Thamar Holanda Da Silva ◽  
Diego Knop Henriques ◽  
...  

Abstract The few Antarctic studies to date to have applied metabarcoding in Antarctica have primarily focused on microorganisms. In this study, for the first time, we apply high-throughput sequencing of environmental DNA to investigate the diversity of Embryophyta (Viridiplantae) DNA present in soil samples from two contrasting locations on Deception Island. The first was a relatively undisturbed site within an Antarctic Specially Protected Area at Crater Lake, and the second was a heavily human-impacted site in Whalers Bay. In samples obtained at Crater Lake, 84% of DNA reads represented fungi, 14% represented Chlorophyta and 2% represented Streptophyta, while at Whalers Bay, 79% of reads represented fungi, 20% represented Chlorophyta and < 1% represented Streptophyta, with ~1% of reads being unassigned. Among the Embryophyta we found 16 plant operational taxonomic units from three Divisions, including one Marchantiophyta, eight Bryophyta and seven Magnoliophyta. Sequences of six taxa were detected at both sampling sites, eight only at Whalers Bay and two only at Crater Lake. All of the Magnoliophyta sequences (flowering plants) represent species that are exotic to Antarctica, with most being plausibly linked to human food sources originating from local national research operator and tourism facilities.


MycoKeys ◽  
2018 ◽  
Vol 39 ◽  
pp. 29-40 ◽  
Author(s):  
Sten Anslan ◽  
R. Henrik Nilsson ◽  
Christian Wurzbacher ◽  
Petr Baldrian ◽  
Leho Tedersoo ◽  
...  

Along with recent developments in high-throughput sequencing (HTS) technologies and thus fast accumulation of HTS data, there has been a growing need and interest for developing tools for HTS data processing and communication. In particular, a number of bioinformatics tools have been designed for analysing metabarcoding data, each with specific features, assumptions and outputs. To evaluate the potential effect of the application of different bioinformatics workflow on the results, we compared the performance of different analysis platforms on two contrasting high-throughput sequencing data sets. Our analysis revealed that the computation time, quality of error filtering and hence output of specific bioinformatics process largely depends on the platform used. Our results show that none of the bioinformatics workflows appears to perfectly filter out the accumulated errors and generate Operational Taxonomic Units, although PipeCraft, LotuS and PIPITS perform better than QIIME2 and Galaxy for the tested fungal amplicon dataset. We conclude that the output of each platform requires manual validation of the OTUs by examining the taxonomy assignment values.


2012 ◽  
Vol 93 (10) ◽  
pp. 2171-2182 ◽  
Author(s):  
Ákos Boros ◽  
Csaba Nemes ◽  
Péter Pankovics ◽  
Beatrix Kapusinszky ◽  
Eric Delwart ◽  
...  

Members of the family Picornaviridae are important pathogens of humans and animals, although compared with the thousands of known bird species (>10 000), only a few (n = 11) picornaviruses have been identified from avian sources. This study reports the metagenomic detection and complete genome characterization of a novel turkey picornavirus from faecal samples collected from eight turkey farms in Hungary. Using RT-PCR, both healthy (two of three) and affected (seven of eight) commercial turkeys with enteric and/or stunting syndrome were shown to be shedding viruses in seven (88 %) of the eight farms. The viral genome sequence (turkey/M176/2011/HUN; GenBank accession no. JQ691613) shows a high degree of amino acid sequence identity (96 %) to the partial P3 genome region of a picornavirus reported recently in turkey and chickens from the USA and probably belongs to the same species. In the P1 and P2 regions, turkey/M176/2011/HUN is related most closely to, but distinct from, the kobuviruses and turdivirus 1. Complete genome analysis revealed the presence of characteristic picornaviral amino acid motifs, a potential type II-like 5′ UTR internal ribosome entry site (first identified among avian-origin picornaviruses) and a conserved, 48 nt long ‘barbell-like’ structure found at the 3′ UTR of turkey/M176/2011/HUN and members of the picornavirus genera Avihepatovirus and Kobuvirus. The general presence of turkey picornavirus – a novel picornavirus species – in faecal samples from healthy and affected turkeys in Hungary and in the USA suggests the worldwide occurrence and endemic circulation of this virus in turkey farms. Further studies are needed to investigate the aetiological role and pathogenic potential of this picornavirus in food animals.


2019 ◽  
Vol 3 ◽  
Author(s):  
Vasselon Valentin ◽  
Rimet Frédéric ◽  
Domaizon Isabelle ◽  
Monnier Olivier ◽  
Reyjol Yorick ◽  
...  

Ecological status assessment of watercourses is based on the calculation of quality indices using pollution sensitivity of targeted biological groups, including diatoms. The determination and quantification of diatom species is generally based on microscopic morphological identification, which requires expertise and is time-consuming and costly. In Europe, this morphological approach is legally imposed by standards and regulatory decrees by the Water Framework Directive (WFD). Over the past decade, a DNA-based molecular biology approach has newly been developed to identify species based on genetic criteria rather than morphological ones (i.e. DNA metabarcoding). In combination with high throughput sequencing technologies, metabarcoding makes it possible both to identify all species present in an environmental sample and to process several hundred samples in parallel. This article presents the results of two recent studies carried out on the WFD networks of rivers of Mayotte (2013–2018) and metropolitan France (2016–2018). These studies aimed at testing the potential application of metabarcoding for biomonitoring in the context of the WFD. We discuss the various methodological developments and optimisations that have been made to make the taxonomic inventories of diatoms produced by metabarcoding more reliable, particularly in terms of species quantification. We present the results of the application of this DNA approach on more than 500 river sites, comparing them with those obtained using the standardised morphological method. Finally, we discuss the potential of metabarcoding for routine application, its limits of application and propose some recommendations for future implementation in WFD.


2021 ◽  
Vol 4 ◽  
Author(s):  
Sara Atienza Casas ◽  
Markus Majaneva ◽  
Thomas Jensen ◽  
Marie Davey ◽  
Frode Fossøy ◽  
...  

Biodiversity assessments using molecular identification of organisms through high-throughput sequencing techniques have been a game changer in ecosystem monitoring, providing increased taxonomic resolution, more objective identifications, potential cost reductions, and reduced processing times. The use of DNA metabarcoding of bulk samples and environmental DNA (eDNA) is now widespread but is not yet universally implemented in national monitoring programs. While bulk sample metabarcoding involves extraction of DNA from organisms in a sample, eDNA analysis involves obtaining DNA directly from environmental samples, which can include microorganisms, meiofauna-size taxa and macrofauna traces such as larval stages, skin and hair cells, gametes, faeces and free DNA bound to particles. In Norway, freshwater biomonitoring in compliance with the EU Water Framework Directive (WFD) is conducted on several administrative levels, including national monitoring programs for running water, small and large lakes. These programs typically focus on a fraction of the actual biodiversity present in the monitored habitats (Weigand 2019). DNA metabarcoding of both bulk samples and eDNA samples are relevant tools for future freshwater biomonitoring in Norway. The aim of this PhD project is to develop assessment protocols based on DNA-metabarcoding and eDNA of benthic invertebrates, microcrustaceans and fish that can be used as standard biomonitoring tools to assess the ecological condition of lakes. The main topics addressed will be: - Development of protocols throughout the eDNA-metabarcoding workflow (i.e. sampling, filtration, preservation, extraction, amplification and sequencing) suitable to execute biodiversity assessments and determine the ecological status of lakes. - Comparison of the results obtained using molecular tools and traditional morphology-based approaches in order to assess the feasibility of such techniques to be incorporated as standard biomonitoring tools, such as the ones implemented under the provisions of the WFD. - Evaluate the effect of improved taxonomic resolution from molecular techniques on determining the ecological status of lakes, both by broadening the number of taxa analyzed and by identifying more taxa to species level. - Assess the feasibility of using eDNA extracted from water samples, taken at different depths and fish densities, to measure fish abundance/biomass as a proxy to calculate the ecological quality indices regulated in the WFD. - Analyze the coverage and resolution provided by reference libraries for certain taxa, such as crustacea, in order to assess the reliability and precision of taxonomic assignments.


Sign in / Sign up

Export Citation Format

Share Document