scholarly journals Air quality in the municipality of Loznica: The characteristics of the main air polluters

2007 ◽  
Vol 87 (2) ◽  
pp. 211-224
Author(s):  
Danijela Obradovic ◽  
Dejan Filipovic

Researches of existing environmental state represent the basis of the researches for the needs of planning new activities or increasing existing activities in space, but also the basis for population?s health research and protection and maintains of areas with important natural and cultural-historic values. Investigations of air pollution and air quality fall into group of basic activities during describing and evaluating the total environmental state in certain area. This paper identifies the main sources of air pollution in the municipality of Loznica and, according to results of measured values of air pollutants (emission and imission values), concludes about air quality. It also proposes in the end mitigation measures for improvement of the air quality, and therefore of entire environment.

Atmosphere ◽  
2019 ◽  
Vol 10 (9) ◽  
pp. 494 ◽  
Author(s):  
Yifeng Xue ◽  
Shihao Zhang ◽  
Zhen Zhou ◽  
Kun Wang ◽  
Kaiyun Liu ◽  
...  

Air pollution in Beijing, China has attracted continuous worldwide public attention along with the rapid urbanization of the city. By implementing a set of air pollution mitigation measures, the air quality of Beijing has been gradually improved in recent years. In this study, the intrinsic factors leading to air quality improvement in Beijing are studied via a quantitative evaluation of the temporal and spatial changes in emissions of primary air pollutants over the past ten years. Based on detailed activity levels of each economic sector and a localized database containing source and pollutant specific emission factors, an integrated emissions inventory of primary air pollutants discharged from various sources between 2006 and 2015 is established. With the implementation of phased air pollution mitigation measures, and the Clean Air Action Plan, the original coal-dominated energy structure in Beijing has undergone tremendous changes, resulting in the substantial reduction of multiple air pollutants. The total of emissions of six major atmospheric pollutants (PM10, PM2.5, SO2, NOX, VOCs and NH3) in Beijing decreased by 35% in 2015 compared to 2006—this noticeable decrease was well consistent with the declining trend of ambient concentration of criterion air pollutants (SO2, PM10, PM2.5 and NO2) and air quality improvement, thus showing a good correlation between the emission of air pollutants and the outcome of air quality. SO2 emission declined the most, at about 71.7%, which was related to the vigorous promotion of combustion source control, such as the shutdown of coal-fired facilities and domestic stoves and transition to clean energy, like natural gas or electricity. Emissions of PM decreased considerably (by 48%) due to energy structure optimization, industrial structure adjustments, and end-of-pipe PM source control. In general, NOX, NH3, and VOCs decreased relatively slightly, by 25%, 14%, and 2%, respectively, and accordingly, they represented the limiting factors for improving air quality and the key points of air pollution mitigation in Beijing for the future.


Atmosphere ◽  
2021 ◽  
Vol 12 (4) ◽  
pp. 431
Author(s):  
Ayako Yoshino ◽  
Akinori Takami ◽  
Keiichiro Hara ◽  
Chiharu Nishita-Hara ◽  
Masahiko Hayashi ◽  
...  

Transboundary air pollution (TAP) and local air pollution (LAP) influence the air quality of urban areas. Fukuoka, located on the west side of Japan and affected by TAP from the Asian continent, is a unique example for understanding the contribution of LAP and TAP. Gaseous species and particulate matter (PM) were measured for approximately three weeks in Fukuoka in the winter of 2018. We classified two distinctive periods, LAP and TAP, based on wind speed. The classification was supported by variations in the concentration of gaseous species and by backward trajectories. Most air pollutants, including NOx and PM, were high in the LAP period and low in the TAP period. However, ozone was the exception. Therefore, our findings suggest that reducing local emissions is necessary. Ozone was higher in the TAP period, and the variation in ozone concentration was relatively small, indicating that ozone was produced outside of the city and transported to Fukuoka. Thus, air pollutants must also be reduced at a regional scale, including in China.


2016 ◽  
Author(s):  
Dipesh Rupakheti ◽  
Bhupesh Adhikary ◽  
Puppala S. Praveen ◽  
Maheswar Rupakheti ◽  
Shichang Kang ◽  
...  

Abstract. Lumbini, in southern Nepal, is a UNESCO world heritage site of universal value as the birthplace of Buddha. Poor air quality in Lumbini and surrounding regions is a great concern for public health as well as for preservation, protection and promotion of Buddhist heritage and culture. We present here results from measurements of ambient concentrations of key air pollutants (PM, BC, CO, O3) in Lumbini, first of its kind for Lumbini, conducted during an intensive measurement period of three months (April–June 2013) in the pre-monsoon season. The measurements were carried out as a part of the international air pollution measurement campaign; SusKat-ABC (Sustainable Atmosphere for the Kathmandu Valley – Atmospheric Brown Clouds). The ranges of hourly average concentrations were: PM10: 10.5–604.0 µg m−3, PM2.5: 6.1–272.2 µg m−3; BC: 0.3–30.0 µg m−3; CO: 125.0–1430.0 ppbv; and O3: 1.0–118.1 ppbv. These levels are comparable to other very heavily polluted sites throughout South Asia. The 24-h average PM2.5 and PM10 concentrations exceeded the WHO guideline very frequently (94 % and 85 % of the sampled period, respectively), which implies significant health risks for the residents and visitors in the region. These air pollutants exhibited clear diurnal cycles with high values in the morning and evening. During the study period, the worst air pollution episodes were mainly due to agro-residue burning and regional forest fires combined with meteorological conditions conducive of pollution transport to Lumbini. Fossil fuel combustion also contributed significantly, accounting for more than half of the ambient BC concentration according to aerosol spectral light absorption coefficients obtained in Lumbini. WRF-STEM, a regional chemical transport model, was used to simulate the meteorology and the concentrations of pollutants. The model was able to reproduce the variation in the pollutant concentrations well; however, estimated values were 1.5 to 5 times lower than the observed concentrations for CO and PM10 respectively. Regionally tagged CO tracers showed the majority of CO came from the upwind region of Ganges valley. The model was also used to examine the chemical composition of the aerosol mixture, indicating that organic carbon was the main constituent of fine mode PM2.5, followed by mineral dust. Given the high pollution level, there is a clear and urgent need for setting up a network of long-term air quality monitoring stations in the greater Lumbini region.


2017 ◽  
Vol 17 (11) ◽  
pp. 7261-7276 ◽  
Author(s):  
Tobias Wolf-Grosse ◽  
Igor Esau ◽  
Joachim Reuder

Abstract. Street-level urban air pollution is a challenging concern for modern urban societies. Pollution dispersion models assume that the concentrations decrease monotonically with raising wind speed. This convenient assumption breaks down when applied to flows with local recirculations such as those found in topographically complex coastal areas. This study looks at a practically important and sufficiently common case of air pollution in a coastal valley city. Here, the observed concentrations are determined by the interaction between large-scale topographically forced and local-scale breeze-like recirculations. Analysis of a long observational dataset in Bergen, Norway, revealed that the most extreme cases of recurring wintertime air pollution episodes were accompanied by increased large-scale wind speeds above the valley. Contrary to the theoretical assumption and intuitive expectations, the maximum NO2 concentrations were not found for the lowest 10 m ERA-Interim wind speeds but in situations with wind speeds of 3 m s−1. To explain this phenomenon, we investigated empirical relationships between the large-scale forcing and the local wind and air quality parameters. We conducted 16 large-eddy simulation (LES) experiments with the Parallelised Large-Eddy Simulation Model (PALM) for atmospheric and oceanic flows. The LES accounted for the realistic relief and coastal configuration as well as for the large-scale forcing and local surface condition heterogeneity in Bergen. They revealed that emerging local breeze-like circulations strongly enhance the urban ventilation and dispersion of the air pollutants in situations with weak large-scale winds. Slightly stronger large-scale winds, however, can counteract these local recirculations, leading to enhanced surface air stagnation. Furthermore, this study looks at the concrete impact of the relative configuration of warmer water bodies in the city and the major transport corridor. We found that a relatively small local water body acted as a barrier for the horizontal transport of air pollutants from the largest street in the valley and along the valley bottom, transporting them vertically instead and hence diluting them. We found that the stable stratification accumulates the street-level pollution from the transport corridor in shallow air pockets near the surface. The polluted air pockets are transported by the local recirculations to other less polluted areas with only slow dilution. This combination of relatively long distance and complex transport paths together with weak dispersion is not sufficiently resolved in classical air pollution models. The findings have important implications for the air quality predictions over urban areas. Any prediction not resolving these, or similar local dynamic features, might not be able to correctly simulate the dispersion of pollutants in cities.


2021 ◽  
Author(s):  
Yuqiang Zhang ◽  
Drew Shindell ◽  
Karl Seltzer ◽  
Lu Shen ◽  
Jean-Francois Lamarque ◽  
...  

Abstract. China has seen dramatic emission changes from 2010, especially after the implementation of Clean Air Action in 2013, with significant air quality and human health benefits observed. Air pollutants, such as PM2.5 and surface ozone, as well as their precursors, have long enough lifetime in the troposphere which can be easily transported downwind. So emission changes in China will not only change the regional air quality domestically, but also affect the air quality in downwind regions. In this study, we use a global chemistry transport model to simulate the influence on both domestic and foreign air quality from the emission change from 2010 to 2017 in China. By applying the health impact functions derived from epidemiology studies, we then quantify the changes in air pollution-related (including both PM2.5 and O3) mortality burdens at regional and global scales. The majority of air pollutants in China reach their peak values around 2012 and 2013. Compared with the year 2010, the population-weighted annual PM2.5 in China increases till 2011 (94.1 μg m−3), and then begins to decrease. In 2017, the population-weighted annual PM2.5 decreases by 17.6 %, compared with the values in 2010 (84.7 μg m−3). The estimated national PM2.5 concentration changes in China are comparable with previous studies using fine-resolution regional models, though our model tends to overestimate PM2.5 from 2013 to 2017 when evaluated with surface observation in China during the same periods. The emission changes in China increased the global PM2.5-related mortality burdens from 2010 to 2013, by 27,700 (95 %CI: 23,900–31, 400) deaths yr−1 in 2011, and 13, 300 (11,400–15,100) deaths yr−1 in 2013, among which at least 93 % occurred in China. The sharp emission decreases after 2013 bring significant benefits for reduced avoided premature mortality in 2017, reaching 108, 800 (92,800–124,800) deaths yr−1 globally, among which 92 % happening in China. Different trend as PM2.5, the annual maximum daily 8-hr ozone in China increased, and also the ozone-related premature deaths, ranging from 3,600 (2,700–4,300) deaths yr−1 in 2011 (75 % of global total increased premature deaths), and 8,500 (6,500–9,900) deaths yr−1 in 2017 (143 % of the global total). Downwind regions, such as South Korea, Japan, and U.S. generally see a decreased O3-related mortality burden after 2013 as a combination of increased export of ozone and decreased export of ozone precursors. In general, we conclude that the sharp emission reductions in China after 2013 bring benefits of improved air quality and reduced premature deaths associated with air pollution at global scale. The benefits are dominated by the PM2.5 decreases since the ozone is shown to actually increase with the emission decrease.


2021 ◽  
Author(s):  
Gabriela Iorga ◽  
George-Bogdan Burghelea

<p>Present research contributes to scientific knowledge concerning spatial and temporal variation of major air pollutants with high resolution at the country scale bringing statistical information on concentrations of NOx, O<sub>3</sub>, CO, SO<sub>2</sub> and particulate matter with an aerodynamic diameter below 10 μm (PM<sub>10</sub>) and below 2.5 μm (PM<sub>2.5</sub>) during the pandemic year 2020 using an observational data set from the Romanian National Air Quality Network in seven selected cities spread out over the country. These cities have different level of development, play regional roles, might have potential influence at European scale and they are expected to be impacted by different pollution sources. Among them, three cities (Bucharest, Brașov, Iași) appear frequently on the list of the European Commission with reference to the infringement procedure that the European Commission launched against Romania in the period 2007-2020 regarding air quality.</p><p>Air pollutant data was complemented with local meteorological parameters at each site (atmospheric pressure, relative humidity, temperature, global solar radiation, wind speed and direction). Statistics of air pollutants provide us with an overview of air pollution in main Romanian cities.  Correlations between meteorological parameters and ambient pollutant levels were analyzed. Lowest air pollution levels were measured during the lockdown period in spring, as main traffic and non-essential activities were severely restricted. Among exceptions were the construction activities that were not interrupted. During 2020, some of selected cities experienced few pollution episodes which were due to dust transport from Sahara desert. However, in Bucharest metropolitan area, some cases with high pollution level were found correlated with local anthropogenic activity namely, waste incinerations. Air mass origins were investigated for 72 hours back by computing the air mass backward trajectories using the HYSPLIT model. Dust load and spatial distribution of the aerosol optical depth with BSC-DREAM8b v2.0 and NMBM/BSC-Dust models showed the area with dust particles transport during the dust events.</p><p>The obtained results are important for investigations of sources of air pollution and for modeling of air quality.</p><p><strong> </strong></p><p><strong>Acknowledgment:</strong></p><p>The research leading to these results has received funding from the NO Grants 2014-2021, under Project contract no. 31/2020, EEA-RO-NO-2019-0423 project. NOAA Air Resources Laboratory for HYSPLIT transport model, available at READY website https://www.ready.noaa.gov  and the Barcelona dust forecast center for BSC-DREAM8b and NMBM/BSC-Dust models, available at:  https://ess.bsc.es/bsc-dust-daily-forecast are also acknowledged. The data regarding ground-based air pollution and meteorology by site was extracted from the public available Romanian National Air Quality Database, www.calitateaer.ro.</p>


Author(s):  
Ivan Sukhorukov ◽  
◽  
Anastasiia Chelpanova ◽  
Olena Malokhlib ◽  
◽  
...  

The article is devoted to the analysis of the Ukrainian legislation in the field of air protection, as well as the development of practical recommendations for its improvement by comparing it with the legislation of the European Union. Given the need for Ukraine to borrow the positive experience of the European Union in the field of air protection, the article analyzes the legislation to ensure air quality in countries such as Germany, the French Republic, the Swiss Confederation. The main types of air pollutants are identified. The problem of inaccuracy of information on air quality is highlighted. The authors suggest ways to improve domestic legislation in the field of air protection.


Atmosphere ◽  
2020 ◽  
Vol 11 (7) ◽  
pp. 750
Author(s):  
Hoang Ngoc Khue Vu ◽  
Quang Phuc Ha ◽  
Duc Hiep Nguyen ◽  
Thi Thu Thuy Nguyen ◽  
Thoai Tam Nguyen ◽  
...  

Along with its rapid urban development, Ho Chi Minh City (HCMC) in recent years has suffered a high concentration of air pollutants, especially fine particulate matters or PM2.5. A comprehensive study is required to evaluate the air quality conditions and their health impact in this city. Given the lack of adequate air quality monitoring data over a large area of the size of HCMC, an air quality modeling methodology is adopted to address the requirement. Here, by utilizing a corresponding emission inventory in combination with The Air Pollution Model-Chemical Transport Model (TAPM-CTM), the predicted concentration of air pollutants is first obtained for PM2.5, NOx, and SO2. Then by associating the pollutants exposed with the mortality rate from three causes, namely Ischemic Heart Disease (IHD), cardiopulmonary, and lung cancer, the impact of air pollution on human health is obtained for this purpose. Spatial distribution has shown a high amount of pollutants concentrated in the central city with a high density of combustion vehicles (motorcycles and automobiles). In addition, a significant amount of emissions can be observed from stevedoring and harbor activities, including ferries and cargo handling equipment located along the river. Other sources such as household activities also contribute to an even distribution of emission across the city. The results of air quality modeling showed that the annual average concentrations of NO2 were higher than the standard of Vietnam National Technical Regulation on Ambient Air Quality (QCVN 05: 2013 40 µg/m3) and World Health Organization (WHO) (40 µg/m3). The annual average concentrations of PM2.5 were 23 µg/m3 and were also much higher than the WHO (10 µg/m3) standard by about 2.3 times. In terms of public health impacts, PM2.5 was found to be responsible for about 1136 deaths, while the number of mortalities from exposure to NO2 and SO2 was 172 and 89 deaths, respectively. These figures demand some stringent measures from the authorities to potentially remedy the alarming situation of air pollution in HCM City.


2017 ◽  
Vol 10 (9) ◽  
pp. 3255-3276 ◽  
Author(s):  
Augustin Colette ◽  
Camilla Andersson ◽  
Astrid Manders ◽  
Kathleen Mar ◽  
Mihaela Mircea ◽  
...  

Abstract. The EURODELTA-Trends multi-model chemistry-transport experiment has been designed to facilitate a better understanding of the evolution of air pollution and its drivers for the period 1990–2010 in Europe. The main objective of the experiment is to assess the efficiency of air pollutant emissions mitigation measures in improving regional-scale air quality. The present paper formulates the main scientific questions and policy issues being addressed by the EURODELTA-Trends modelling experiment with an emphasis on how the design and technical features of the modelling experiment answer these questions. The experiment is designed in three tiers, with increasing degrees of computational demand in order to facilitate the participation of as many modelling teams as possible. The basic experiment consists of simulations for the years 1990, 2000, and 2010. Sensitivity analysis for the same three years using various combinations of (i) anthropogenic emissions, (ii) chemical boundary conditions, and (iii) meteorology complements it. The most demanding tier consists of two complete time series from 1990 to 2010, simulated using either time-varying emissions for corresponding years or constant emissions. Eight chemistry-transport models have contributed with calculation results to at least one experiment tier, and five models have – to date – completed the full set of simulations (and 21-year trend calculations have been performed by four models). The modelling results are publicly available for further use by the scientific community. The main expected outcomes are (i) an evaluation of the models' performances for the three reference years, (ii) an evaluation of the skill of the models in capturing observed air pollution trends for the 1990–2010 time period, (iii) attribution analyses of the respective role of driving factors (e.g. emissions, boundary conditions, meteorology), (iv) a dataset based on a multi-model approach, to provide more robust model results for use in impact studies related to human health, ecosystem, and radiative forcing.


2019 ◽  
Vol 5 (3) ◽  
pp. 205630511986765
Author(s):  
Supraja Gurajala ◽  
Suresh Dhaniyala ◽  
Jeanna N. Matthews

Poor air quality is recognized as a major risk factor for human health globally. Critical to addressing this important public-health issue is the effective dissemination of air quality data, information about adverse health effects, and the necessary mitigation measures. However, recent studies have shown that even when public get data on air quality and understand its importance, people do not necessarily take actions to protect their health or exhibit pro-environmental behaviors to address the problem. Most existing studies on public attitude and response to air quality are based on offline studies, with a limited number of survey participants and over a limited number of geographical locations. For a larger survey size and a wider set of locations, we collected Twitter data for a period of nearly 2 years and analyzed these data for three major cities: Paris, London, and New Delhi. We identify the three hashtags in each city that best correlate the frequency of tweets with local air quality. Using tweets with these hashtags, we determined that people’s response to air quality across all three cities was nearly identical when considering relative changes in air pollution. Using machine-learning algorithms, we determined that health concerns dominated public response when air quality degraded, with the strongest increase in concern being in New Delhi, where pollution levels are the highest among the three cities studied. The public call for political solutions when air quality worsens is consistent with similar findings with offline surveys in other cities. We also conducted an unsupervised learning analysis to extract topics from tweets in Delhi and studied their evolution over time and with changing air quality. Our analysis helped extract relevant words or features associated with different air quality–related topics such as air pollution policy and health. Also, the topic modeling analysis revealed niche topics associated with sporadic air quality events, such as fireworks during festivals and the air quality impact on an outdoor sport event. Our approach shows that a tweet-based analysis can enable social scientists to probe and survey public response to events such as air quality in a timely fashion and help policy makers respond appropriately.


Sign in / Sign up

Export Citation Format

Share Document