scholarly journals Isolation of humic acid from oxidized lignite and complexation with metal cations

2017 ◽  
Vol 71 (4) ◽  
pp. 319-327
Author(s):  
Benjamin Catovic ◽  
Minela Sisic ◽  
Majda Srabovic ◽  
Melita Huremovic

Lignite is brown coal, which in its composition contains humic acids. Humic acids are produced by coal combustion, which leads to the enrichment of coal humic acids. Lignite, from the opet pit mine Sikulje, lignite ore ?Kreka?, Bosnia and Herzegovina, was fragmented and sieved to the appropriate size and used as a base material. The isolation of humic acid was carried out from pre-oxidized and dried lignite after which it was refined. Identification thus obtained humic acids was carried out by FTIR spectroscopy and its characterization of UV analysis which is determined by optical density of isolated humic acid and its complexation with metal cations. Data obtained by FTIR spectroscopic analysis of isolated humic acids show no significant structural and chemical difference in relation to the spectrum obtained for standard humic acids (Sigma Aldrich). UV analysis showed that isolated and standard humic acid have E4/E6 ratio in an appropriate range of 3?5, which indicates the presence of a large number of aliphatic structure. Based on the degree of humification was found that the isolated humic acids belong to the type B standard while humic acids belong to type A. The most important property of the humic substances is the ability to interact with the metal ions forming soluble or insoluble complexes which possess different chemical and biological properties and stability. The nature of the complex between humic acid and metal cation derived from the heterogeneous, polyelectric and polydispersive character humic acids that occurs due to the presence of a large number of functional groups. Complexation of humic acid is carried out with different concentrations of metal nitrate solutions and at different pH values. Different amounts of humic acids were used for the complexation. The amount of the free metal ions was measured with the ICP-OES methode. The data were also statistically analyzed with ANOVA. The results showed that increasing the pH reduces the concentration of metal ions adsorbed on humic acid and by increasing the concentrations and amounts of metal humic acid that power increases. On the basis of the difference in absorbance between metals and humic acids can be said that there is an interaction between the metal and the ligand and is based on absorbance values obtained can be determine the next set of metal binding to humic acids Pb>Zn>Ni>Cu.

2019 ◽  
Vol 1 (1) ◽  
pp. 29-32
Author(s):  
Ruzimurod B. Boimurodov ◽  
Zebinisso Q. Bobokhonova

In this article is showing, that the irrigation mountain brown carbonate soils prone methods of irrigation and grassing comes the rapid growth and development of natural vegetation, which leads to intensive humus accumulation. Humus content in the upper layer is increased by 0.98% and a significantly smaller severely eroded. Increasing the amount of humus promotes accumulation mainly humic acids, that conducts to expansion of relations the content of humic acid: The content of folic acid. When grassing of soil traced sharp increase in the number associated with the related and R2 O3 humic acid.


2015 ◽  
Vol 12 (2) ◽  
pp. 130 ◽  
Author(s):  
Raewyn M. Town

Environmental context The speciation of trace metals in the environment is often dominated by complexation with natural organic matter such as humic acid. Humic acid is a negatively charged soft nanoparticle and its electrostatic properties play an important role in its reactivity with metal ions. The presence of major cations, such as Ca2+, can decrease the effective negative charge in the humic acid particle body and thus modify the chemodynamics of its interactions with trace metal ions. Abstract The effect of Ca2+ on the chemodynamics of PbII complexation by humic acid (HA) is interpreted in terms of theory for permeable charged nanoparticles. The effect of the electrostatic field of a negatively charged nanoparticle on its rate of association with metal cations is governed by the interplay of (i) conductive enhancement of the diffusion of cations from the medium to the particle and (ii) ionic Boltzmann equilibration with the bulk solution leading to accumulation of cations in the particle body. Calcium ions accumulate electrostatically within the HA body and thus lower the magnitude of the negative potential in the particle. For the case where trace metal complexation takes place in a medium in which the particulate electrostatic field is set by pre-equilibration in the electrolyte, the lability of Pb-HA complexes is found to be significantly increased in Ca2+-containing electrolyte, consistent with the predicted change in particle potential. Furthermore, the rate-limiting step changes from diffusive supply to the particle body in a 1–1 electrolyte, to inner-sphere complexation in a 2–1 electrolyte. The results provide insights into the electrostatic and covalent contributions to the thermodynamics and kinetics of trace metal binding by soft nanoparticles.


2006 ◽  
Vol 94 (1) ◽  
Author(s):  
Zheng Chang ◽  
Shizuko Ambe ◽  
Kazuya Takahashi ◽  
Fumitoshi Ambe

SummaryA method combining radioactive ‘multitracer’ and dialysis techniques was developed to study the binding of multiple metal ions to humic acid (HA). Technical problems such as the leakage of small-molecule HA segment and the slow diffusion of metal ions through the dialysis membranes were examined. Under the condition of pH = 4.0,


The Analyst ◽  
2015 ◽  
Vol 140 (12) ◽  
pp. 4197-4205 ◽  
Author(s):  
Caiyun Fang ◽  
Lei Zhang ◽  
Xiaoqin Zhang ◽  
Haojie Lu

A new method based on magnetic microspheres with metal ions was developed and applied to characterize putative metal binding proteins.


2016 ◽  
Vol 18 (15) ◽  
pp. 10049-10058 ◽  
Author(s):  
Raewyn M. Town ◽  
Herman P. van Leeuwen

The drastic role of electrostatics in the binding of metal ions by soft charged nanoparticulate humic acid complexants is demonstrated.


2018 ◽  
Vol 25 (6) ◽  
pp. 715-747 ◽  
Author(s):  
Giuseppe Trapani ◽  
Cristina Satriano ◽  
Diego La Mendola

Background: The metal ions dyshomeostasis is increasingly recognized to play a crucial role in the development of aging-related neurodegenerative diseases. Metal trafficking in the brain is related to proteins regulating both uptake and efflux of metals in neurons. Different pathways may occur, depending on specific binding features of metallo-protein complexes. In particular, copper, zinc and iron are recognized to influence the biochemistry of proteins involved in neurodegeneration (for instance Aβ and α-synuclein), as well as those playing a crucial role in neuronal development and efficiency (neurotrophins). Nowadays the application of peptide-based drugs is widespread for different pathologies, but the short lifetime in vivo due to proteolysis and other shortcomings still limit their use. Methods: A structured search was performed about the state of the art on: i) peptidomimetic approaches used to obtain peptides mimicking the metal binding activities of proteins involved in neurons survival, ii) peptide-based nanostructures, as promising biomaterials in tissue engineering and substrates for neurites outgrowth and synapses formation. Results: Recent developments on metal-binding peptides and peptide nanostructures for therapeutic application in neurodegenerative diseases are reviewed, showing as metal ions interaction may affect structural and biological properties of different proteins involved in neurodegenerative diseases. Conclusion: This review provides a survey on peptides able to mimic some biofunctional activities of the whole protein, e.g., the binding features to metal ions, thus highlighting their promising potentialities as new, more effective, therapeutics. The integration of such peptides into multifunctional nanoplatforms can be a smart route for the development of biomaterials scaffolds and nanomedicine applications.


2004 ◽  
Vol 3 (1) ◽  
pp. 79-85 ◽  
Author(s):  
Tatjana Andjelkovic ◽  
Jelica Perovic ◽  
Milovan Purenovic ◽  
Darko Andjelkovic

The aggregation of soil humic acid (HA) after addition of cations was investigated by nephelometric measurements of HA solution turbidity. Here we show that aggregation is promoted by the presence of positive ions in the solution and that the order of increasing effectiveness in turbidity follows Schulze-Hardy rule. Also, the obtained results indicate that the cation with the largest ionic radius within a common valence is the most effective coagulant. Influence of unions follows the sequence: chloride < nitrate < sulphate, but it is insignificant comparing the influence of cation. This confirms that HA molecules are of negative charge.


2001 ◽  
Vol 81 (3) ◽  
pp. 331-336 ◽  
Author(s):  
Elham A Ghabbour ◽  
Geoffrey Davies ◽  
Nadeem K Ghali ◽  
Matthew D Mulligan

The brown biomaterials called humic acids (HA) in peats and soils retain water and bind metal cations and other solutes. Studies of the interactions of purified solid peat and soil-derived HA from different countries with metal cations in water probe HA microstructures and help to characterize the metal binding sites. Labile cations such as Caaq2+, Co aq2+, Cu aq2+, Fe aq3+, Mg aq2+ and Mn aq2+ tightly bind to solid HAs in sequential steps. The isotherms A vs. c are well fitted with the Langmuir model and plots of 1/A vs. 1/c are linear for each step. Here, A is mmol bound metal g–1 HA and c is the equilibrium cation concentration (M). This paper compares the stoichiometric site capacities vi and equilibrium constants Ki for tight binding of Ca aq2+, Co aq2+, Cu aq2+, Fe aq3+, Mg aq2+ and Mn aq2+ at different solid HA sites. Measurements at different temperatures give linearly correlated metal binding enthalpy and entropy changes, indicating that conformational changes and cation/HA hydration/dehydration are important factors in metal binding and release by solid HAs. Key words: Humic acids; metal binding; isotherms; thermodynamics


2012 ◽  
Vol 51 (3) ◽  
pp. 228-237
Author(s):  
D. Dudare ◽  
M. Klavins

The aim of this study is to determine the Cu(II) complexing capacity and stability constants of Cu(II) complexes of humic acids isolated from two well-characterized raised bog peat profiles in respect to the basic properties and humification characteristics of the studied peats and their humic acids. The complex stability constants significantly change within the studied bog profiles and are well correlated with the age and decomposition degree of the peat layer from which the humic acids have been isolated. Among factors that influence this complexation process, molecular mass and ability to form micellar structures (supramolecules) of humic substances are of key importance.


2018 ◽  
Vol 69 (1) ◽  
pp. 191-195
Author(s):  
Elena Radu ◽  
Elena Emilia Oprescu ◽  
Cristina Emanuela Enascuta ◽  
Catalina Calin ◽  
Rusandica Stoica ◽  
...  

The dehydration of polysaccharides fraction in the presence of acid catalysts, is a chemical process in which results as secondary product humic matter. In our work, the humic acid mixture was for the first time based on our knowledge extracted from defatted microalgae biomass rich in polysaccharides by standard alkali treatment, followed by precipitation at acidic pH. The dried humic acid mixture has been characterized using infrared spectroscopic measurements (FT-IR). Exfoliated graphite nanoplatelets (xGnP) were used as new adsorbents for this type of humic acids mixture, their adsorption being investigated. The effect of several parameters such as: contact time, concentration of humic acid mixture, concentration of xGnP, temperature and pH of the solutions were studied. The process of adsorption took place with good results, in the following conditions: at a concentration of humic acid mixture of 18.6 mg L-1, an xGnP amount of 0.01 mg in 25 mL of solution, at a temperature of 25 �� and at acidic pH values, in aqueous solution.


Sign in / Sign up

Export Citation Format

Share Document