scholarly journals Soil acidity and mobile aluminum status in pseudogley soils in Cacak-Kraljevo basin

2012 ◽  
Vol 77 (6) ◽  
pp. 833-843 ◽  
Author(s):  
Ivica Djalovic ◽  
Djordje Jockovic ◽  
Goran Dugalic ◽  
Goran Bekavac ◽  
Bozana Purar ◽  
...  

Soil acidity and aluminum toxicity are considered most damaging soil conditions affecting the growth of most crops. This paper reviews the results of tests of pH, exchangeable acidity and mobile aluminum (Al) concentration in profiles of pseudogley soils from Cacak-Kraljevo basin. For that purpose, 102 soil pits were dug in 2009 in several sites around Cacak- Kraljevo basin. The tests encompassed 54 field, 28 meadow, and 20 forest soil samples. Samples of soil in the disturbed state were taken from the Ah and Eg horizons (102 samples), from the B1tg horizon in 39 field, 24 meadow and 15 forest pits (a total of 78 samples) and from the B2tg horizon in 14 field, 11 meadow, and 4 forest pits (a total of 29 samples). Mean pH values (1M KCl) of the tested soil profiles were 4.28, 3.90 and 3.80 for the Ah, Eg and B1tg horizons, respectively. Soil pH of forest samples was lower than those in meadow and arable land samples (mean values of 4.06, 3.97 and 3.85 for arable land, meadow and forest samples, respectively). Soil acidification was especially intensive in deep horizons, as 27% (Ah), 77% (Eg) and 87% (B1tg) soil samples had the pH value below 4.0. Mean values of total exchangeable acidity (TEA) were 1.55, 2.33 and 3.40 meq 100 g-1 for the Ah, Eg and B1tg horizons, respectively. The TEA values in forest soils were considerably higher (3.39 meq 100 g-1) than those in arable soils and meadow soils (1.96 and 1.93, respectively). Mean mobile Al contents of tested soil samples were 11.02, 19.58 and 28.33 mg Al 100 g-1 for the Ah, Eg and B1tg horizons, respectively. According to the pH and TEA values, mobile Al was considerably higher in the forest soils (the mean value of 26.08 mg Al 100 g-1) than in the arable soils and meadow soils (the mean values of 16.85 and 16.00 mg Al 100 g-1, respectively). The Eg and B1tg horizons of the forest soil had especially high mobile Al contents (the mean values of 28.50 and 32.95 mg Al 100 g-1, respectively). High levels of mobile Al were especially frequent in the forest soils, with 35% (Ah), 85.0% (Eg) and 93.3% (B1tg) of the tested samples ranging above 10 mg Al 100 g-1.

2020 ◽  
Author(s):  
Haoming Yu ◽  
Yunting Fang ◽  
Ronghua Kang

<p>N<sub>2</sub>O and N<sub>2</sub> Emissions from soil in terrestrial ecosystems is a crucial component of the global nitrogen (N) cycle. The response of these two gases emissions from forest soil to temperature change and its underlying mechanisms are essential for predicting N cycle to global warming. Despite the warming-induced effects on soil N cycle is considered to be positive in general, our understanding of temperature sensitivity (Q<sub>10</sub>) of N<sub>2</sub>O and N<sub>2</sub> emissions is rather limited. We quantified the Q<sub>10</sub> of N<sub>2</sub>O and N<sub>2</sub> emissions in forest soils and explored their major driving factors by conducting an incubation experiment using <sup>15</sup>N tracer (Na<sup>15</sup>NO<sub>3</sub>) with soil samples from nineteen forest sites from temperate to tropical zones. The environmental conditions largely varied: mean annual temperature (MAT) ranging from -5.4 to 21.5<sup>o</sup>C and mean annual precipitation (MAP) ranging from 300 to 2449 mm. The soil pH varied between 3.62 to 6.38. We incubated soil samples under an anaerobic condition with temperature from 5 to 35<sup>o</sup>C with an interval of 5<sup>o</sup>C for 12 or 24 hours, respectively. Soil temperature strongly affected the production of N<sub>2</sub>O and N<sub>2</sub>. N<sub>2</sub>O and N<sub>2</sub> production rates showed a positive exponential relation with incubate time and temperature for all forest soils. Our results showed that the Q<sub>10</sub> values ranged from 1.31 to 2.98 for N<sub>2</sub>O emission and 1.69 to 3.83 for N<sub>2</sub> emission, indicating a generally positive feedback of N<sub>2</sub>O and N<sub>2</sub> production to warming. Higher Q<sub>10</sub> values for N<sub>2</sub> than N<sub>2</sub>O implies that N<sub>2</sub> emission is more sensitive to temperature increase. The N<sub>2</sub>O/(N<sub>2</sub>O+N<sub>2</sub>) decreased with increasing temperature in fifteen of nineteen forest soils, suggesting that warming accelerates N<sub>2</sub> emission. Strong spatial variation in Q<sub>10</sub> were also observed, with tropical forest soils exhibiting high Q<sub>10</sub> values and relatively low Q<sub>10</sub> in temperate forest soils. This variation is attributed to the inherent differences in N biogeochemical cycling behavior between the microbial communities among sites. Despite soil temperature primarily controls the N<sub>2</sub>O and N<sub>2</sub> emissions, we  explored the effects of other factors such as pH, C/N, DOC and related functional genes. In addition, we partitioned N<sub>2</sub>O and N<sub>2</sub> emissions to different microbial processes (e.g., denitrification, co-denitrification and anammox). The results indicated that denitrification was the main pathway of N<sub>2</sub>O and N<sub>2</sub> production under anaerobic environment and the contribution increased as temperature rise.</p><p>Key words: Temperature sensitivity, N<sub>2</sub>O, N<sub>2</sub>, Forest soil, Nitrogen cycle, Global warming, Denitrification</p>


1996 ◽  
Vol 76 (2) ◽  
pp. 165-171 ◽  
Author(s):  
Z. Q. Lin ◽  
W. H. Hendershot ◽  
P. H. Schuepp ◽  
G. G. Kennedy ◽  
P. Dutilleul

Major and trace elements (Al, As, Ba, Ca, Cd Co, Cr Cs, Cu Eu Fe, Hf, K, La, Lu, Mg, Mn, Na, Ni, Pb, Rb, Sb, Sc, Si, Sm, Sr, Ta, Tb, Th, Ti, U, V, Yb and Zn) in forest soils from three acid-deposition-affected locations in southern Quebec were investigated. Total element concentrations in the surface layer (0–20 cm) of the Podzolic soils were mostly well within the range of element concentrations in Podzols reported worldwide but showed higher mean values for most elements. The mean concentrations of elements (except Zn, at 124 μg g−1) were also generally comparable to the respective elemental baseline data established for Canadian soils. Element concentrations (μg g−1) of Cs (6.2) Sc (19 8) V (106) Rb (194) K (26 500) and Al (76 900) in the surface soils were significantly higher at the 940-m elevation than the concentrations from the sites at 650 and 770 m along the Roundtop Mountain slope, but Ca (1120) and Ni (4.4) were lowest at the 940-m elevation A similar trend with elevation was not observed at the other mountain location (White Peak). Enrichment-factor (EF) analysis showed significant element enrichment (EF ≥ 10) for Cd, Rb and Sb but impoverishment (EF ≤ 0.1) for Ca, Cu and Ni in topsoils. Key words: Major and trace elements, surface soils, acid deposition


Author(s):  
N. P. Udeh ◽  
A. C. Ikegwuonu ◽  
O. A. Okeke ◽  
C. Obudulu ◽  
K. P. Okafor ◽  
...  

Soil samples and cassava tubers collected from farmlands within Nnamdi Azikiwe University, Awka vicinity were analyzed for their heavy metal levels using Atomic Absorption Spectrophotometer (AAS) in order to assess their levels of contamination on the environment as a result of excessive fertilizers and automobile emission. Physiochemical properties of the soil samples were determined using standard methods. The soil pH had a mean value of 6.27 ± 0.07, 6.10 ± 0.06 and 6.57 ± 0.03 respectively indicating that the soils were slightly acidic to neutrality. Total organic carbon and nitrate mean values were 105.20 ± 6.20, 95.75 ± 9.57 and 94.6 ± 2.27 and 138.07 ± 12.09, 149.35 ± 14.25 and 149.20 ± 1.17 respectively showing presence of some organic matters. The mean levels of heavy metals in the soil samples were 0.01 ± 0.01, 0.05 ± 0.03 and 0.05 ± 0.03 for lead (Pb), 0.24 ± 0.16, 0.001 ± 0.001 and 0.001 ± 0.000 for cadmium (Cd) and 0.00 ± 0.00, 0.010 ± 0.006 and 0.001 ± 0.001 for chromium (Cr). These metals levels were in the abundance trend of Pb>Cd> Cr. The mean metal concentrations obtained in the cassava tubers respectively were 0.001 ± 0.001, 0.001 ± 0.001 and 0.005 ± 0.005 for lead (Pb), 0.000 ± 0.000, 0.0003 ± 0.0003 and 0.000 ± 0.000 for cadmium (Cd) and 0.002 ± 0.002, 0.000 ± 0.000 and 0.002 ± 0.002 for chromium (Cr). These metals levels were in the abundance trend of Pb> Cr > Cd. For both the soil and cassava samples, there were no significant variations in the heavy metal concentrations and also in physicochemical parameter except for pH; this showed that there is low heavy metal enrichment in the soils studied. Based on the study, the following heavy metals (Pb, Cd, and Cr) falls within the Codex maximum permissible limits 0.1mg/l or ppm expect soil cadmium in science village which is above the Codex limit. The overall results showed that the farmlands (on soils and cassava tuber) appear to be free from poisoning or some metal enrichment and safe for agricultural purposes and also safe for human health and consumption.


2021 ◽  
Vol 14 (2) ◽  
pp. 177-191

Abstract: Radioactivity must be studied in soil to see the changes in the doses of human exposure. In this study, natural radioactivity and radiological hazard indices in soil samples of the Faculty of Agriculture (Al-Husseineya site) and the Faculty of Medicine (Al-Mothafeen site) in Kerbala Governorate were determined using gamma-ray spectroscopy. The results showed that the mean values of specific activity (in units of Bq/kg) and standard errors of: 238U, 232Th and 40K at Al-Husseineya site was 21.7±7.2, 9.43±3.2 and 335.8±82.2, respectively, while at Al-Mothafeen site, the mean values and standard errors were 22.4±8.8, 11.2±3.3 and 333.1±70.7, respectively. Radiation maps of natural radioactivity (238U, 232Th and 40K) at Al-Husseineya and Al-Mothafeen sites were mapped using geographic information system (GIS) technology. Moreover, most results in the present study fall within the acceptable levels, as defined by OCDE, UNSCEAR and ICRP. Therefore, there is no significant radiological hazard at the sites which were studied. Keywords: Radiological hazard, Natural radioactivity, Soil, NaI (Tl), Gamma-ray, Karbela University.


2016 ◽  
Author(s):  
Jiří Zbíral ◽  
David Čižmár ◽  
Stanislav Malý ◽  
Elena Obdržálková

Abstract. Determining and characterizing soil organic matter (SOM) cheaply and reliably can help to support decisions concerning sustainable land management and climate policy. Glomalin, a glycoprotein produced by arbuscular mycorrhizal fungi, was recommended as a promising indicator of SOM quality. But extracting glomalin from and determining glomalin in soils using classical chemical methods is too complicated and time consuming and therefore limits the use of this parameter in large scale surveys. Near infrared spectroscopy (NIRS) is a very rapid, non-destructive analytical technique that can be used to determine many constituents of soil organic matter. Representative sets of 84 different soil samples from arable land and grasslands and 75 forest soils were used to develop reliable NIRS calibration models for glomalin. One calibration model was developed for samples with a low content of glomalin (arable land and grasslands), the second for soils with a high content of glomalin (forest soils), and the third calibration model for all combined soil samples. Calibrations were validated and optimized by leave-one-sample-out-cross-validation (LOSOCV) and by the external validation using eight soil samples (arable land and grassland), and six soil samples (forest soils) not included in the calibration models. Two different calibration models were recommended. One model for arable and grassland soils and the second for forest soils. No statistically significant differences were found between the reference and the NIRS method for both calibration models. The parameters of the NIRS calibration model (RMSECV = 0,70 and R = 0,90 for soils from arable land and grasslands and RMSECV = 3,8 and R = 0,94 for forest soils) proved that glomalin can be determined directly in air-dried soils by NIRS with adequate trueness and precision.


2021 ◽  
Vol 13 (4) ◽  
pp. 1705
Author(s):  
Muhammad Umar Hayyat ◽  
Rab Nawaz ◽  
Zafar Siddiq ◽  
Muhammad Bilal Shakoor ◽  
Maira Mushtaq ◽  
...  

The extensive use of lithium (Li) ion-based batteries has increased the contamination of soil and water systems due to widespread dispersal of Li products in the environment. In the current study, the influence of Li application on soil fertility and leachate was observed. Three soil samples were collected and five treatments of Li (0, 50, 100, 150 and 200 mg/L) were applied. After three months of Li treatment, leachate was collected and soil samples were subjected to physical and chemical analyses. The results showed that the mean values of soil pH were increased slightly after Li application while electrical conductivity (EC) ranged from 1.2 to 5.1 µS/cm, indicating that soil was slightly saline in nature. The sodium was observed to be greater than the recommended values (0.3–0.7 mg/kg) in Li-amended soil while calcium and magnesium values decreased in soils compared to untreated soil. Mean values of phosphorus and potassium were greater before Li application and reduced considerably after Li application. Leachate analysis showed that all the parameters differed significantly except those of zinc and iron. The EC of leachate samples ranged from 2286–7188 µS/cm, which shows strong salinity. The sodium adsorption ratio (SAR) ranged from 1–11, which indicates that it falls into the marginal soil category. Lithium concentration in leachate samples ranged from 0–95 mg/L, which was significantly higher than the acceptable value for lithium (2.5 mg/L) in leachate. A soil sample (3) with an additional 10% organic matter showed that after Li application, the loss of nutrients in leachate was less as compared to the other two samples, demonstrating that organic matter improved soil conditions and suppressed the negative effects of Li on soil. Our results could raise concerns about risks in situations where food and fodder crops are associated with Li-contaminated waste disposal.


2021 ◽  
Vol 13 (12) ◽  
pp. 2411
Author(s):  
Igor Savin ◽  
Elena Prudnikova ◽  
Yury Chendev ◽  
Anastasia Bek ◽  
Dmitry Kucher ◽  
...  

When soils are used for a long period of time as arable land, their properties change. This can lead to soil degradation and loss of fertility, as well as other important soil biosphere functions. Obtaining data on the trends in arable soil conditions over large areas using traditional field survey methods is expensive and time-consuming. Currently, there are large archives of satellite data that can be used to monitor the status of arable soils. The analysis of changes in the color of the surface of arable chernozem soils of the Belgorod region, for the period from 1985 to the present, has been carried out based on the analysis of Landsat TM5 satellite data and information about the spectral reflectance of the soils of the region. It is found that, on most parts of arable lands of the region, the color of the soil surface has not changed significantly since 1985. Color changes were revealed on 11% of the analyzed area. The greatest changes are connected with the humus content and moisture content of soils. The three most probable reasons for the change of humus content in an arable horizon of soils are as follows: the dehumidification of soils during plowing; the reduction of the humus content due to water erosion; and the increase in humus content due to changes in the land-use system of the region in recent years. The change in soil moisture regime has mainly been found in arable lands in river valleys, most likely conditioned by the natural evolution of soils. Trends of increasing soil moisture are prevalent. The revealed regularities testify to the high stability of arable soils in the region during the last few decades.


1968 ◽  
Vol 40 (2) ◽  
pp. 54-59
Author(s):  
Osmo Mäkitie

The extractant, 0.5 M acetic acid –0.5 M ammonium acetate at pH 4.65, which is used in soil-testing, extracts relatively high amounts of aluminium from acid soils. The mean values of acetate-extractable aluminium at pH 4.65, 1.75 meq Al/100 g of soil, and of exchangeable aluminium (M KCI extraction), 0.41 meq Al were obtained from a material of 30 samples of acid soils (Table 2). Several other acetic acid ammonium acetate extractants, from M acetic acid to M ammonium acetate solution were also used for studying the extractability of soil aluminium. The soil-testing extractant can be used for the estimation of the soluble amounts of aluminium in acid soils, however, further studies are needed for a better interpretation of the ammonium acetate extractable (at pH 4.65) aluminium in our soils.


1976 ◽  
Vol 48 (2) ◽  
pp. 181-186
Author(s):  
Jorma Rautapää ◽  
Arvo Myllymäki ◽  
Hilkka Siltanen

The highest endrin residue in 15 forest soil samples was 0.2 ppm, which is nearly twice the amount of endrin sprayed on the area in one treatment. In6analysed garden soils the maximum residue was 0.13 ppm, which is equivalent to one treatment. In general, endrin had not significantly accumulated in these soils, even after many years of use. The endrin residues did not correlate with the quantities used or the type of soil. DDT or its metabolites were discovered only from two forest areas and one garden area. The highest residue was 0.02 ppm. PCB’s with low chlorine content (42 % of Cl) were not found, but a high-chlorinated compound (60 % of Cl) was discovered from six forest soils, the highest residue being 0.1 ppm


2019 ◽  
Vol 2 (4) ◽  
pp. 119-125
Author(s):  
Sonexay Xayheungsy ◽  
Khiem Hong Le

Results of the first investigation of the activity concentration of the surface soil samples collected at various locations of Thoulakhom district of Vientiane province of Laos People's Democratic Republic (PDR) are presented in this work. The activity concentration of the natural radionuclides 226Ra, 232Th and 40K in the soil samples were determined by gamma spectrometer using a highenergy resolution semiconductor detector HPGe. The activity concentrations of the natural radionuclides were in the range from 11.28 to 31.46 with the mean of 21.76 Bq.kg-1 for 226Ra, from 7.13 to 44.47 with the mean of 21.85 Bq.kg-1 for 232Th and from 8.96 to 581.52 with the mean of 112.89 Bq.kg-1 for 40K. These mean values of the activity concentration were lower than the average worldwide ones, which were 33, 45 and 420 Bq.kg-1 for 226Ra, 232Th, and 40K, respectively. The results indicate dthat the radiation hazard from natural 226Ra, 232Th, and 40K radionuclides in all investigated soil samples taken from area under investigation in this work was not significant.


Sign in / Sign up

Export Citation Format

Share Document