scholarly journals Characteristic study of non-circular incompressible free jet

2013 ◽  
Vol 17 (3) ◽  
pp. 787-800 ◽  
Author(s):  
Ponnambalam Manivannan ◽  
Banbla Sridhar

This paper reports an experimental investigation of bulk properties of turbulent, which is three dimensional, incompressible, air jets issuing into still air surrounding from the nozzles. The jet orifices utilized included circular, hexagonal and cruciform geometries. Experimental results of pertinent mean flow properties such as axis velocity decay, half width growth, potential core and turbulence intensities are reported. Single Hotwire anemometer was used for measurements of the velocity field. The experiment for the three jets was conducted under the same nominal conditions with the exit Reynolds number of 15,400. Consistent with previous investigations of other non circular jets, the cruciform jet is found to have an overall superior mixing capability over the circular counter part. Immediately downstream of the nozzle exit, it entrains, and then mixes with, the surroundings at a higher rate. This jet has a shorter potential core with higher rates of decay and spread than the circular jet. This phenomenon of axis switching is also found to occur in this jet.

Author(s):  
Adra Benhacine ◽  
Zoubir Nemouchi ◽  
Lyes Khezzar ◽  
Nabil Kharoua

A numerical study of a turbulent plane jet impinging on a convex surface and on a flat surface is presented, using the large eddy simulation approach and the Smagorinski-Lilly sub-grid-scale model. The effects of the wall curvature on the unsteady filtered, and the steady mean, parameters characterizing the dynamics of the wall jet are addressed in particular. In the free jet upstream of the impingement region, significant and fairly ordered velocity fluctuations, that are not turbulent in nature, are observed inside the potential core. Kelvin-Helmholtz instabilities in the shear layer between the jet and the surrounding air are detected in the form of wavy sheets of vorticity. Rolled up vortices are detached from these sheets in a more or less periodic manner, evolving into distorted three dimensional structures. Along the wall jet the Coanda effect causes a marked suction along the convex surface compared with the flat one. As a result, relatively important tangential velocities and a stretching of sporadic streamwise vortices are observed, leading to friction coefficient values on the curved wall higher than those on the flat wall.


2019 ◽  
Vol 864 ◽  
pp. 141-180 ◽  
Author(s):  
Abbas Ghasemi ◽  
Burak Ahmet Tuna ◽  
Xianguo Li

Rectangular air jets of aspect ratio $2$ are studied at $Re=UD_{h}/\unicode[STIX]{x1D708}=17\,750$ using particle image velocimetry and hot-wire anemometry as they develop naturally or under acoustic forcing. The velocity spectra and the spatial theory of linear stability characterize the fundamental ($f_{n}$) and subharmonic ($f_{n}/2$) modes corresponding to the Kelvin–Helmholtz roll-up and vortex pairing, respectively. The rectangular cross-section of the jet deforms into elliptic/circular shapes downstream due to axis switching. Despite the apparent rotation of the vortex rings or the jet cross-section, the axis-switching phenomenon occurs due to reshaping into rounder geometries. By enhancing the vortex pairing, excitation at $f_{n}/2$ shortens the potential core, increases the jet spread rate and eliminates the overshoot typically observed in the centreline velocity fluctuations. Unlike circular jets, the skewness and kurtosis of the rectangular jets demonstrate elevated anisotropy/intermittency levels before the end of the potential core. The axis-switching location is found to be variable by the acoustic control of the relative expansion/contraction rates of the shear layers in the top (longer edge), side (shorter edge) and diagonal views. The self-induced vortex deformations are demonstrated by the spatio-temporal evolution of the phase-locked three-dimensional ring structures. The curvature-induced velocities are found to reshape the vortex ring by imposing nonlinear azimuthal perturbations occurring at shorter wavelengths with time/space evolution. Eventually, the multiple high-curvature/high-velocity regions merge into a single mode distribution. In the plane of the top view, the self-induced velocity distribution evolves symmetrically while the tilted ring results in the asymmetry of the azimuthal perturbations in the side view as the side closer to the acoustic source rolls up in more upstream locations.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 237
Author(s):  
Ming Chen ◽  
Haijin Huang ◽  
Xingxing Zhang ◽  
Senpeng Lv ◽  
Rengmin Li

Three-dimensional (3D) confined wall jets have various engineering applications related to efficient energy dissipation. This paper presents experimental measurements of mean flow development for a 3D rectangular wall jet confined by a vertical baffle with a fixed distance (400 mm) from its surface to the nozzle. Experiments were performed at three different Reynolds numbers of 8333, 10,000 and 11,666 based on jet exit velocity and square root of jet exit area (named as B), with water depth of 100 mm. Detailed measurements of current jet were taken using a particle image velocimetry technique. The results indicate that the confined jet seems to behave like an undisturbed jet until 16B downstream. Beyond this position, however, the mean flow development starts to be gradually affected by the baffle confinement. The baffle increases the decay and spreading of the mean flow from 16B to 23B. The decay rate of 1.11 as well as vertical and lateral growth rates of 0.04 and 0.19, respectively, were obtained for the present study, and also fell well within the range of values which correspond to the results in the radial decay region for the unconfined case. In addition, the measurements of the velocity profiles, spreading rates and velocity decay were also found to be independent of Reynolds number. Therefore, the flow field in this region appears to have fully developed at least 4B earlier than the unconfined case. Further downstream (after 23B), the confinement becomes more pronounced. The vertical spreading of current jet shows a distinct increase, while the lateral growth was found to be decreased significantly. It can be also observed that the maximum mean velocity decreases sharply close to the baffle.


1974 ◽  
Vol 96 (3) ◽  
pp. 246-251 ◽  
Author(s):  
M. P. du Plessis ◽  
R. L. Wang ◽  
R. Kahawita

Velocity and turbulent shear stress measurements were taken within the first 20 nozzle widths of incompressible turbulent air jets issuing from square apertures. Since the jet decays rapidly to axisymmetric configurations, the results are compared with classical closed form solutions and with finite difference solutions for round jets. Because of the nonsimilarity of velocity profiles the classical solutions are unsatisfactory, but finite difference solutions with a suitable mixing length model gives good predictions of axis velocity decay, velocity profiles and spreading of jets with both uniform and nonuniform starting profiles. The method presented here is useful to designers of free jet sensing and control devices since it enables fast and accurate prediction of square jet center-plane characteristics starting from known velocity profiles at the nozzle exit.


Author(s):  
Amina Radhouane ◽  
Nejla Mahjoub Sai¨d ◽  
Hatem Mhiri ◽  
George Lepalec ◽  
Philippe Bournot

The aim of this paper is to examine experimentally as well as numerically the flowfield resulting from the interaction between a twin circular inclined hot jets emerging into a cooling crossflow. The resulting flowfield is quite complex due to the presence of different vortical structures including the kidney vortex, the horse-shoe vortex, etc... The evolution of the twin inclined jets through the crossflow could be depicted by tracking the mean-flow velocity field and its associated turbulence statistics by means of the PIV technique. This evolution can be influenced by many factors. Herein, we will deal with that resulted by the injection nozzles’ inclination and the jets’ spacing. Then, we performed a three dimensional sample of the studied configuration in order to simulate the evolution of the resulting flowfield. For that, the Navier Stokes equations were simulated with an RSM second order turbulent closure model. Then a non uniform meshing was applied. A good agreement was obtained between the experimental data and the numerical modeling. After validation we could represent in addition to the available results, the temperature distribution and the effects the variation of the injection inclination and that of the jets’ spacing bring on it (on its spatial evolution).


1976 ◽  
Vol 98 (2) ◽  
pp. 256-260 ◽  
Author(s):  
J. P. Narain

The momentum-flux development from three-dimensional free jets has been investigated. The analysis is presented for free jets from circular, triangular, rectangular and elliptical orifices. The bluff jets, with eccentricity near unity, show the usual potential region and the axisymmetric decay region for the maximum axial velocity decay. The slender jets, with smaller than one eccentricity values, show three zones of flow development. The potential core region is followed by a characteristic decay region where velocity decay is dependent on the shape and eccentricity of the orifice. The maximum axial velocity of all slender jets finally decay axisymmetrically with increasing downstream distances.


1967 ◽  
Vol 71 (684) ◽  
pp. 858-859
Author(s):  
N. Rajaratnam ◽  
K. Subramanya

Fairly elegant semi-empirical theories are available for predicting the turbulent diffusion of axisymmetric and plane jets. However, there are relatively few investigations on the non-axisymmetric jets, herein denoted as three-dimensional jets. The extensive investigations conducted at the Polytechnic Institute of Brooklyn on three-dimensional jets have shown that the flow field is characterised by three distinct regions; the potential core, the characteristic decay (CD) region and the axisymmetric decay (AD) region. In the CD region the velocity profiles in the direction of the minor axis are similar but the maximum velocity decay curves are different for different shapes. In the AD region the flow characteristics are similar to that of an axisymmetric jet. Yevdjevich has recently conducted another investigation on rectangular jets.


1972 ◽  
Vol 94 (2) ◽  
pp. 339-344 ◽  
Author(s):  
U. M. Patankar ◽  
K. Sridhar

This paper presents an experimental investigation of mean velocities of turbulent, three-dimensional incompressible air jets from various rectangular orifices issuing tangentially to and flowing along the surface of a curved wall into quiescent ambient air. An experimental study of the jet separation is also presented. The three-dimensional curved wall jet is found to be drastically different in its mean property behavior from its so-called two-dimensional counterpart. Velocity contour plots show the resultant effect on the jet flow of two diverging tendencies—the free jet flow and the Coanda flow. This effect is found to occur earlier with smaller aspect-ratio orifices. Within the range of variables studied, three-dimensional curved wall jets may be characterized by three regions of maximum velocity decay. The rate of maximum velocity decay is dependent on orifice aspect ratio, except in the potential core region. Further, the curved wall jet differs from other three-dimensional jet flows in its growth behavior.


Author(s):  
Leonard F. Pease ◽  
Judith Ann Bamberger

Abstract Free jets have been studied in detail over much of the last century, but the theory for offset and attached jets remains incomplete. Attached jets differ from free jets in that they lose momentum to nearby surfaces, attenuating their velocities. The velocity profiles of free circular jets are nearly Gaussian, with quantitative mathematical descriptions derived from first principles by Goertler and Tollmien (Rajaratnam, 1976). In contrast, mathematical descriptions of three-dimensional attached jets from circular nozzles remain much less mature. Agelin-Chaab and Tachie (2011) used particle imaging velocimetry of a three-dimensional attached jet to show that the scaled velocity decays with scaled distance from the nozzle with a power law exponent between −1.15 and −1.20, which is larger in magnitude than that of a free jet. However, quantitative analytical expressions for the velocity profiles of attached jets similar to those of free jets remain elusive. This paper addresses this critical gap. Here we evaluate the velocity profiles of three-dimensional offset jets emerging from circular nozzles that become attached jets. These jets lose momentum due to interactions with nearby surfaces and are important to evaluating flows in mixing vessels and to suspending solids and trapped gases in radioactive waste tanks. Despite the importance of attached jets, prior insight has been purely experimental, limited to overly simplistic analytical models, or restricted to computationally expensive computational fluid dynamics case studies. We compare the expression of Verhoff (1963) to experimental results to find reasonable quantitative agreement. As stated by Agelin-Chaab and Tachie (2011), “detailed velocity measurements of 3D offset jets are rare.” Such remains the case. This study adds to the literature by providing information at two additional Reynolds numbers (1.43 · 106 and 1.87 · 106) and evaluating simple but accurate expressions for velocity profiles. These Reynolds numbers and corresponding velocities are higher, typically orders of magnitude higher, than other reports. The semi-empirical stream wise velocity profile perpendicular to the surface proposed by Verhoff (1963) is in approximate agreement with these velocity profiles, which is surprising because these attached jets are three-dimensional instead of two-dimensional as evaluated by Verhoff. However, additional work is necessary to fully describe these profiles quantitatively.


2017 ◽  
Vol 830 ◽  
pp. 660-680 ◽  
Author(s):  
T. Kataoka ◽  
S. J. Ghaemsaidi ◽  
N. Holzenberger ◽  
T. Peacock ◽  
T. R. Akylas

The generation of internal gravity waves by a vertically oscillating cylinder that is tilted to the horizontal in a stratified Boussinesq fluid of constant buoyancy frequency, $N$, is investigated. This variant of the widely studied horizontal configuration – where a cylinder aligned with a plane of constant gravitational potential induces four wave beams that emanate from the cylinder, forming a cross pattern known as the ‘St. Andrew’s Cross’ – brings out certain unique features of radiated internal waves from a line source tilted to the horizontal. Specifically, simple kinematic considerations reveal that for a cylinder inclined by a given angle $\unicode[STIX]{x1D719}$ to the horizontal, there is a cutoff frequency, $N\sin \unicode[STIX]{x1D719}$, below which there is no longer a radiated wave field. Furthermore, three-dimensional effects due to the finite length of the cylinder, which are minor in the horizontal configuration, become a significant factor and eventually dominate the wave field as the cutoff frequency is approached; these results are confirmed by supporting laboratory experiments. The kinematic analysis, moreover, suggests a resonance phenomenon near the cutoff frequency as the group-velocity component perpendicular to the cylinder direction vanishes at cutoff; as a result, energy cannot be easily radiated away from the source, and nonlinear and viscous effects are likely to come into play. This scenario is examined by adapting the model for three-dimensional wave beams developed in Kataoka & Akylas (J. Fluid Mech., vol. 769, 2015, pp. 621–634) to the near-resonant wave field due to a tilted line source of large but finite length. According to this model, the combination of three-dimensional, nonlinear and viscous effects near cutoff triggers transfer of energy, through the action of Reynolds stresses, to a circulating horizontal mean flow. Experimental evidence of such an induced mean flow near cutoff is also presented.


Sign in / Sign up

Export Citation Format

Share Document