scholarly journals A feasibility analysis of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry

2015 ◽  
Vol 19 (5) ◽  
pp. 1821-1833
Author(s):  
Dennis Jankovich ◽  
Kresimir Osman

The thermodynamic analysis demonstrates the feasibility of replacing the standard ammonia refrigeration device with the cascade NH3/CO2 refrigeration device in the food industry. The main reason for replacement is to reduce the total amount of ammonia in spaces like deep-freezing chambers, daily chambers, working rooms and technical passageways. An ammonia-contaminated area is hazardous to human health and the safety of food products. Therefore the preferred reduced amount of ammonia is accumulated in the Central Refrigeration Engine Room, where the cascade NH3/CO2 device is installed as well. Furthermore, the analysis discusses and compares two left Carnot?s refrigeration cycles, one for the standard ammonia device and the other for the cascade NH3/CO2 device. Both cycles are processes with two-stage compression and two-stage throttling. The thermodynamic analysis demonstrates that the selected refrigeration cycle is the most cost-effective process because it provides the best numerical values for the total refrigeration factor with respect to the observed refrigeration cycle. The chief analyzed influential parameters of the cascade device are: total refrigeration load, total reactive power, mean temperature of the heat exchanger, evaporating and condensing temperature of the low-temperature part.

2017 ◽  
Vol 24 (2) ◽  
pp. 70-77 ◽  
Author(s):  
Shengchun Liu ◽  
Zhili Sun ◽  
Hailong Li ◽  
Baomin Dai ◽  
Yong Chen

1995 ◽  
Vol 32 (9-10) ◽  
pp. 75-84 ◽  
Author(s):  
A. D. Andreadakis ◽  
G. H. Kristensen ◽  
A. Papadopoulos ◽  
C. Oikonomopoulos

The wastewater from the city of Thessaloniki is discharged without treatment to the nearby inner part of the Thessaloniki Gulf. The existing, since 1989, treatment plant offers only primary treatment and did not operate since the expected effluent quality is not suitable for safe disposal to the available recipients. Upgrading of the plant for advanced biological treatment, including seasonal nitrogen removal, is due from 1995. In the mean time, after minor modifications completed in February 1992, the existing plant was put into operation as a two-stage chemical-biological treatment plant for 40 000 m3 d−1, which corresponds to about 35% of the total sewage flow. The operational results obtained during the two years operation period are presented and evaluated. All sewage and sludge treatment units of the plant perform better than expected, with the exception of the poor sludge settling characteristics, due to severe and persistent bulking caused by excessive growth of filamentous microorganisms, particularly M. Parvicella. Effective control of the bulking problem could lead to more cost-effective operation and increased influent flows.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 2940
Author(s):  
Antonella Curulli

Safety and quality are key issues for the food industry. Consequently, there is growing demand to preserve the food chain and products against substances toxic, harmful to human health, such as contaminants, allergens, toxins, or pathogens. For this reason, it is mandatory to develop highly sensitive, reliable, rapid, and cost-effective sensing systems/devices, such as electrochemical sensors/biosensors. Generally, conventional techniques are limited by long analyses, expensive and complex procedures, and skilled personnel. Therefore, developing performant electrochemical biosensors can significantly support the screening of food chains and products. Here, we report some of the recent developments in this area and analyze the contributions produced by electrochemical biosensors in food screening and their challenges.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
Hongbin Chen ◽  
Shuai Yu ◽  
Haiyang Liu ◽  
Jie Liu ◽  
Yongguang Xiao ◽  
...  

AbstractAssessment of lung and heart states is of critical importance for patients with pneumonia. In this study, we present a small-sized and ultrasensitive accelerometer for continuous monitoring of lung and heart sounds to evaluate the lung and heart states of patients. Based on two-stage amplification, which consists of an asymmetric gapped cantilever and a charge amplifier, our accelerometer exhibited an extremely high ratio of sensitivity to noise compared with conventional structures. Our sensor achieves a high sensitivity of 9.2 V/g at frequencies less than 1000 Hz, making it suitable to use to monitor weak physiological signals, including heart and lung sounds. For the first time, lung injury, heart injury, and both lung and heart injuries in discharged pneumonia patients were revealed by our sensor device. Our sound sensor also successfully tracked the recovery course of the discharged pneumonia patients. Over time, the lung and heart states of the patients gradually improved after discharge. Our observations were in good agreement with clinical reports. Compared with conventional medical instruments, our sensor device provides rapid and highly sensitive detection of lung and heart sounds, which greatly helps in the evaluation of lung and heart states of pneumonia patients. This sensor provides a cost-effective alternative approach to the diagnosis and prognosis of pneumonia and has the potential for clinical and home-use health monitoring.


2018 ◽  
Vol 115 (2) ◽  
pp. 204
Author(s):  
Deng Ma ◽  
Wei Wu ◽  
Shifan Dai ◽  
Zhibin Liu

In this study, the feasibility of the carburization of vanadium-bearing hot metal was first investigated by thermodynamic analysis. Next, three carburizers, namely a low-nitrogen carburizer, anthracite, and coke, were used for carburization of 500 g of vanadium-bearing hot metal at 1450 °C, 1500 °C, and 1550 °C, respectively. The carbon increments for the low-nitrogen carburizer, anthracite and coke followed decreasing order in the temperature range from 1450 °C to 1550 °C. Anthracite was the most cost-effective carburizer. Hence, anthracite is used in pilot-scale experiments of the vanadium-bearing hot metal (100 kg and 200 kg). Finally, vanadium extraction experiments of the vanadium-bearing hot metal were carried out in a top-bottom-combined blowing induction furnace. It is proved that the average superheat degree of semi-steel increases from 100 °C to 198 °C by the carburization of vanadium-containing hot metal.


Sign in / Sign up

Export Citation Format

Share Document