scholarly journals Hydraulic properties and energy dissipation of deep hard rock under H-M coupling and cycling loads

2019 ◽  
Vol 23 (Suppl. 3) ◽  
pp. 935-942 ◽  
Author(s):  
Cheng-Han Zhang ◽  
Shuang You ◽  
Hong-Guang Ji ◽  
Fei Li ◽  
Hong-Tao Wang

The permeability of deep rock is closely related to the stability and safety of underground engineering. The rocks in deep stratum are mostly with high stress and high osmotic pressure. Therefore, it is necessary to consider the coupling effect between porewater pressure and in situ stress on rock mass. A series of triaxial cyclic loading and unloading experiments under hydraulic-mechanics coupling conditions are carried out to studied the mechanical and hydraulic properties of granite in the depth of 1300 m to 1500 m. Especially, the effect of the disturbance on the permeability of fractured rocks are investigated by unloaded the confining pressure. Tests results presented that the stress-strain curves of deep granite showed typical brittle characteristics. The principal stress of granite exhibited a linear relationship under the high confining pressure of 34-40 MPa and high osmotic pressure of 13-15 MPa. Dissipated energy of the rock decreased to a relatively low level after 2-3 loading cycles and then slowly increased. Permeability showed a decreasing trend as the loading and unloading cycles increase. Finally, acoustic emission technology was used to monitor the fracture evolution in rocks, the acoustic emission signal released as the fractures develop and energy dissipated. The results would provide basic data for the exploitation and excavation in the deep galleries.

2019 ◽  
Vol 9 (23) ◽  
pp. 5141
Author(s):  
Zhang ◽  
Wang ◽  
Du ◽  
Lou ◽  
Wang

In actual mining situations, the advancing speed of the working face is usually accelerated, which may affect the failure and seepage characteristics of gas-bearing coal, and may even induce dynamic disasters. In order to discover the effects of such accelerated advancement of the working face, an experimental study on the failure and seepage characteristics of gas-bearing coal under accelerated loading and unloading conditions was carried out in this work. The results showed that the energy release was more violent and impactful under accelerated loading and unloading paths. The time required for the failure of the sample was significantly shortened. After being destroyed, the breakup of the sample was more severe, and the magnitude of the permeability was greater. Accordingly, the acceleration of the loading and unloading had significant control effects on the failure and permeability of coal and it showed a significant danger of inducing coal and gas dynamic disasters. Meanwhile, the degree of influence of the acceleration on the coal decreased with an increase in the gas pressure and increased significantly with an increase in the initial confining pressure. It was found that for a deep high-gas mine, the accelerated advancement of the working face under a high in situ stress condition would greatly increase the risk of coal and gas dynamic disasters. Then, the permeability evolution model of gas-bearing coal in consideration of changes in the loading and unloading rates was theoretically established in this work, and this permeability model was validated by experimental data. The permeability model was found to be relatively reasonable. In summary, the effects of accelerated loading and unloading on the failure and seepage characteristics of gas-bearing coal were obtained through a combination of experimental and theoretical studies, and the intrinsic relationship between the accelerated advancement of the working face and the occurrence of coal and gas dynamic disasters was discovered in this work.


2018 ◽  
Vol 2018 ◽  
pp. 1-11 ◽  
Author(s):  
Jingdong Jiang ◽  
Jie Xu

Characteristics of energy accumulation, evolution, and dissipation in conventional triaxial compression of mudstones with different moisture contents were explored. Stress-strain relations and acoustic emission (AE) characteristics of the deformation and failure of rock specimens were analyzed. The densities and rates of stored energy, elastic energy, and dissipated energy under different confining pressures were confirmed. The results demonstrated that the growth rate of absorbed total energy decreases with the increase of moisture content, indicating that the higher the moisture content is, the less the total energy mudstone samples absorb. The dissipated energy of the soaking sample, by contrast, has the first increase speed, and natural sample comes second at the beginning. When entering the crack stable development stage, the dry sample has the fastest growing rate of dissipated energy, meaning that dissipated energy used for crack propagation gradually decreases with the increase of moisture content. The AE signals significantly enhance at the initial compression stage and plastic deformation stage with the moisture content decreasing. The AE location events at the failure moment decrease as the moisture content increasing. The time that the maximum AE even rate appears is slightly lagged behind the macroscopic failure time, and the AE even rates increase with the decrease of confining pressure. The above results indicate that the water erosion process on rock reduces the cohesive energy and cohesive force, destroys the micromechanical structure, and minimizes the energy states of rock.


2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
Lang Li ◽  
Mingyang Wang ◽  
Pengxian Fan ◽  
Haiming Jiang ◽  
Yihao Cheng ◽  
...  

This paper presents experimental study on rockbursts that occur in deep underground excavations. To begin with, the boundary conditions for excavation in deep underground engineering were analysed and elastic adaptive boundary is an effective way to minimize the boundary effect of geomechanical model test. Then, in order to simulate an elastic adaptive loading boundary, Belleville springs were used to establish this loading boundary. With the aforementioned experimental set-ups and fabrication of similarity models for test, the phenomena of strain mode rockbursts were satisfactorily reproduced in laboratory. The internal stress, strain, and convergences of the openings of the model were instrumented by subtly preembedded sensors and transducers. Test results showed that, with an initial state of high stress from both upper layers’ gravitational effects and in situ stress due to tectonic movements, the excavation brings a dramatic rise in the hoop stress and sharp drop in radial stress, which leads to the splitting failure of rock mass. Finally a rockburst occurred associated with the release of strain energy stored in highly stressed rock mass. In addition, the failure of the surrounding rock demonstrated an obvious hysteresis effect which supplies valuable guide and reference for tunnel support. Not only do these results provide a basis for further comprehensive experiments, but also the data can offer assisting aids for further theoretical study of rockbursts.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Jun Zhao ◽  
Tan Zhang

Brittle failure of hard rock poses a serious threat to the stability of surrounding rock in deep underground engineering. In order to study the deformation and failure characteristics of deep buried granite under high confining pressure cyclic loading and unloading, MTS815 electro-hydraulic servo rock test system was used to conduct cyclic loading and unloading tests under confining pressures of 15 MPa, 35 MPa, 45 MPa, and 55 MPa, and the corresponding stress-strain curves and deformation failure characteristic curves were obtained. The experimental results show the follows: (1) under the same confining pressure, the peak strength, crack initiation stress, crack damage stress, and Poisson’s ratio of the specimens under cyclic loading and unloading are larger than those under conventional triaxial loading and unloading, and the unloading elastic modulus is smaller than that, under conventional triaxial compression; (2) the results show that, under different confining pressures, the granite samples show obvious brittle failure characteristics, the elastic modulus and crack initiation stress increase first and then decrease with the confining pressure, the peak strength and crack damage stress of the samples increase linearly with the confining pressure, and Poisson’s ratio increases first and then remains unchanged with the confining pressure; (3) under the two kinds of stress conditions, the macroscopic failure of the samples is mainly shear failure. The deformation and failure law of granite samples revealed in this study has significant reference value for the selection of rock mass mechanical model of surrounding rock stability of underground engineering, the formulation of surrounding rock support countermeasures, and the evolution law of mechanical parameters with damage variables.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Zhiyuan Hou ◽  
Chuanbo Hao ◽  
Fukun Xiao ◽  
Gang Liu

In order to explore the failure characteristics of sandstone under unloading conditions in deep zone with high stress, constant axial pressure and unloading confining pressure tests were conducted on a yellow sandstone sample under different initial confining pressures using the French ROCK600-50 triaxial tester, and the mechanical properties, energy conversion characteristics, and damage evolution law of sandstone failure under unloading conditions were obtained. The test results showed that the axial deformation, the confining pressure for failure, and the shear fracture energy during the failure process of sandstone under the unloading state were positively correlated with the initial confining pressure; the dilatancy amount and speed and the radial deformation were negatively correlated with the initial confining pressure, exhibiting the characteristics of dilatancy under low confining pressure and compression under high confining pressure. Before the unloading point, almost all the energy absorbed by the rock under low initial confining pressure was converted into elastic energy, while part of the energy absorbed under high initial confining pressure was converted into dissipated energy, and the higher the confining pressure, the greater the proportion of the dissipated energy converted. The higher the initial confining pressure, the greater the elastic energy, radial deformation energy, and dissipated energy at the rock fracture point. The larger the unloading confining pressure, the greater the postpeak failure energy and surplus energy of sandstone, and the greater the increase in the proportion of elastic energy converted into surplus energy. The higher the confining pressure, the larger the damage value at the unloading point; the damage speed in the unloading stage was significantly greater than that in the loading stage.


2020 ◽  
Vol 56 (1) ◽  
pp. 3-17
Author(s):  
Xiaojing Li ◽  
Peijie He ◽  
Jianhui Tang ◽  
Xudong Chen

In underground engineering, such as mining engineering and deep tunnel engineering, the rock is often loaded and unloaded repeatedly. The strength of rock under cyclic load is lower than that under static load. To obtain the fracture response of the rock, the three-point bending tests of notched granite beams under cyclic loading and unloading were carried out with Electro-hydraulic Servo Material Test System. The acoustic emission technology was adopted to monitor the acoustic emission events of sample in the process of fracture. It is revealed that the fracture toughness of granite under cyclic loading and unloading is lower than that under static loading. Based on the acoustic emission energy obtained from monitoring, the damage evolution during cyclic loading and unloading was analyzed. The fracture mode of granite samples is analyzed by the RA value-average frequency correlation method. And the Felicity ratio during the loading and unloading cycle was calculated to evaluate the severity of initial damage of the material. It is revealed that Kaiser effect appears only in the elastic deformation stage of cyclic loading unloading bending. The Holmquist–Johnson–Cook damage constitutive model and Weibull distribution were used to establish the heterogeneous granite model. And the three-point bending of the model under cyclic loading and unloading was simulated to disclose the crack growth mechanism of rock. The study may provide some references for rock instability control in geotechnical engineering construction.


2019 ◽  
Vol 2019 ◽  
pp. 1-9
Author(s):  
Tao Qin ◽  
Yanwei Duan ◽  
Hongru Sun ◽  
Honglei Liu ◽  
Lei Wang

The acoustic emission characteristics of rock specimens under different initial unloading confining pressures were tested to obtain the damage and rupture characteristics of the sandstone unloading confining pressure path. The CT scan and three-dimensional reconstruction of the fractured rock specimens were carried out to study the differences of energy evolution and acoustic emission characteristics during the failure of sandstone under different initial unloading pressures. The results show that the unloading confining pressure has a significant influence on the deformation and failure of the rock. There is a significant yielding platform for the circumferential strain and the bulk strain at the peak of the unloading pressure. The larger the initial unloading pressure is, the greater the axial absorption strain energy, the dissipative energy, and the elastic strain energy are at the peak point. After the stress peak point, the elastic strain can be quickly converted into the dissipative energy for rock damage. The elastic energy released from the moment of rock failure under high confining pressure is more concentrated. The acoustic emission ringing and b value characteristic parameters of the rock have a good correlation with the internal energy evolution of the rock, which better reflects the progressive damage of the rock under low stress and the sudden failure of high-stress unloading.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Mingqiang Sheng ◽  
Awei Mabi ◽  
Xigen Lu

The triaxial cyclic loading and unloading test was carried out on a TAW-2000 rock mechanics to study the permeability characteristics of deep-buried sandstone. This paper analyzed the evolution laws of permeability, elastic modulus, rock damage, dissipated energy, and acoustic emission events of sandstone under different confining pressures. It also introduced the concept of relative strain and further discussed the relationship between relative strain and permeability. The test results showed that the permeability of sandstone under cyclic loading and unloading obviously experienced three stages. At a low strain level, the damage degree of sandstone was low. As a result, both the number of acoustic emission events and the proportion of the dissipated energy density were small. In this stage, with increasing the stress, the permeability decreased. With the increase of the relative strain, the propagation of fissure increased through rock interior and the damage of rock was accumulated. Consequently, the number of acoustic emission events grew slowly, and the proportion of dissipated energy density and the damage variable (D) increased gradually. In this stage, the permeability increases. As the axial strain reached the peak strain, the fissures developed into cracks and the rock failure happened. The number of acoustic emission events increased rapidly; both the proportion of the dissipated energy density and the damage variable (D) obtain the maximum value. In this stage, the permeability increased greatly. In this study, the point of fissure propagation of rock specimens was used as the point of demarcation. Before the fissures propagated, the permeability increased slowly and it was in accordance with a linear function. After the fissures propagated, the degree of rock damage increased, and the permeability increased in the form of an exponential function. The larger the confining pressure was, the smaller the relative strain corresponding to the point of fissure propagation was.


2021 ◽  
Vol 2021 ◽  
pp. 1-15
Author(s):  
Tianzuo Wang ◽  
Chunli Wang ◽  
Fei Xue ◽  
Linxiang Wang ◽  
Beyene Hana Teshome ◽  
...  

To explore the characteristics of rock deformation and failure under cyclic loading and unloading, the MTS815 rock mechanics test system and acoustic emission (AE) signal acquisition system were used to perform cyclic loading and unloading tests on red sandstone samples. The results showed that, compared with the uniaxial compression test, cyclic loading and unloading had a certain strengthening effect on the strength of the samples. The plastic deformation of the rock samples increased as the number of cycles increased. Based on AE signals, the cracking mode classification was analyzed on the basis of the average frequency and the rise angle of the waveforms. It was observed that the Felicity ratio gradually decreased with the increase in the stress level, which showed a cumulative damage effect. From the perspective of energy, the obvious increase of AE energy rate was mainly concentrated in the early and late stages of uniaxial compression, while the significant increase of dissipated energy rate occurred in the late stage of uniaxial compression. During the cyclic loading and unloading, most of the work done by external forces in the compaction stage and the elastic stage was converted into elastic strain energy, and dissipated energy began to gradually increase in the stage of stable fracture development. In addition, it was found that the damage evolution of the rock samples changed from slow to fast, and the dissipated energy ratio increased when failure was approaching.


Sign in / Sign up

Export Citation Format

Share Document