scholarly journals Study of geometrical characteristics effects on radiation properties in high porosity fibrous porous media using the pore-scale simulation and two-flux model

2020 ◽  
Vol 24 (2 Part B) ◽  
pp. 1299-1310
Author(s):  
Seyed Hosseinalipour ◽  
Mohammadmehdi Namazi

In the present study, the radiation properties of a high porosity fibrous medium which is used in catalytic heaters were estimated. The calculation process was based on an inverse method using pore scale simulation and two-flux model. The results showed a good agreement with available experimental results. The effects of geometrical parameters including the solid volume fraction, fibers orientation, and diameter on the radiation properties were investigated. By increasing the solid share in the fibrous porous medium, the extinction coefficient increased, in which the absorption growth rate was higher than the scattering growth rate. The effect of the fibers angle on the scattering was greater than its effect on the absorption. For each porosity, an extinction coefficient could be defined in which, by increasing the fibers diameter, the extinction coefficient would not be reduced any more. The solid volume fraction, fibers diameter, and orientation were found to be the most effective geometric parameters on the radiation properties, respectively.

2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Yuanpeng Yao ◽  
Huiying Wu ◽  
Zhenyu Liu

In this paper, a numerical model employing an approximately realistic three-dimensional (3D) foam structure represented by Weaire–Phelan foam cell is developed to study the steady-state heat conduction of high porosity open-cell metal foam/paraffin composite at the pore-scale level. The conduction problem is considered in a cubic representative computation unit of the composite material with a constant temperature difference between one opposite sides of the cubic unit (the other outer surfaces of the cubic unit are thermally insulated). The effective thermal conductivities (ETCs) of metal foam/paraffin composites are calculated with the developed pore-scale model considering small-scale details of heat conduction, which avoids using adjustable free parameters that are usually adopted in the previous analytical models. Then, the reason why the foam pore size has no evident effect on ETC as reported in the previous macroscopic experimental studies is explored at pore scale. Finally, the effect of air cavities existing within solid paraffin in foam pore region on conduction capacity of metal foam/paraffin composite is investigated. It is found that our ETC data agree well with the reported experimental results, and thus by direct numerical simulation (DNS), the ETC data of different metal foam/paraffin composites are provided for engineering applications. The essential reason why pore size has no evident effect on ETC is due to the negligible interstitial heat transfer between metal foam and paraffin under the present thermal boundary conditions usually used to determine the ETC. It also shows that overlarge volume fraction of air cavity significantly weakens the conduction capacity of paraffin, which however can be overcome by the adoption of high conductive metal foam due to enhancement of conduction.


2016 ◽  
Vol 809 ◽  
pp. 601-627 ◽  
Author(s):  
Ayse Yuksel-Ozan ◽  
George Constantinescu ◽  
Heidi Nepf

Large eddy simulation (LES) is used to study the evolution and structure of a lock-exchange, Boussinesq gravity current forming in a channel partially blocked by a porous layer. This configuration is used to understand how the characteristics of a surface layer containing floating vegetation affects the generation of thermally driven convective water exchange in a long shallow channel. The porous layer, which represents the roots of the floating vegetation, contains a staggered array of rigid square cylinders of edge length $D$ with solid volume fraction $\unicode[STIX]{x1D719}$. The cylinders extend over a depth $h_{1}<H$ below the free surface, where $H$ is the channel depth. The surface current of lighter fluid splits into two layers, one propagating slowly inside the porous layer and the other flowing beneath the porous layer. The main geometrical parameters of the porous layer, $\unicode[STIX]{x1D719}$ and $h_{1}/H$, have a large effect on the dynamics and structure of the surface current and the temporal variation of the front position. For cases with sufficiently large values of $h_{1}/H$ and $\unicode[STIX]{x1D719}$, the front within the porous layer approaches the triangular shape observed for low Reynolds number lock-exchange currents propagating in a channel containing cylinders over its whole volume ($h_{1}/H=1$), and the surface current transitions to a drag-dominated regime in which the front velocity is proportional to $t^{-1/4}$, where $t$ is the time since the current is initiated. For sufficiently high values of $\unicode[STIX]{x1D719}$, the velocity of the fluid inside the porous layer is close to zero at all locations except for those situated close to the lock gate and for some distance behind the front. Close to the front, lighter fluid from below penetrates into the porous layer due to unstable stratification at the bottom of the porous layer. Simulation results are also used to assess how $\unicode[STIX]{x1D719},h_{1}/H$ and the Reynolds number affect the rate at which the heavier fluid situated initially inside the porous layer is removed by the advancing surface current and the main mixing mechanisms. Based on the estimated time scales for flushing the porous (root) layer, we show that flushing can significantly enhance the overall rate of nutrient removal by the floating vegetation by maintaining a higher concentration of nutrients within the root layer.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Ahmed Mohammed Alshehri ◽  
Hasan Huseyin Coban ◽  
Shafiq Ahmad ◽  
Umair Khan ◽  
Wajdi Mohamad Alghamdi

This paper provides a comprehensive analysis of the mixed convective flow that comprises SWCNT-MWCNT/water hybrid nanofluid containing micropolar fluid through a partially slipped vertical Riga surface. A Cattaneo–Christov heat flux model is used to examine the heat transport rate. The energy equation is gaining more significance with the effect of viscous dissipation and thermal stratification. The flow model is transformed by convenient transformation into nondimensionless form. The numerical results of nonlinear complex equations are collected using the bvp4c built-in function from MATLAB which is based on the finite difference method. The graphical results are obtained for both hybrid nanofluid and simple nanofluid. The temperature distribution for hybrid nanofluid is higher than that for simple nanofluid when the solid volume fraction increases. The axial friction factor increases with solid volume fraction, porosity parameter, and mixed convection parameter. The velocity graph varies inversely with nanofluid volume fraction and micropolar parameter.


2020 ◽  
Vol 16 ◽  
Author(s):  
Adel Alblawi ◽  
Saba Keyani ◽  
S. Nadeem ◽  
Alibek Issakhov ◽  
Ibrahim M. Alarifi

Objective: In this paper, we consider a model that describes the ciliary beating in the form of metachronal waves along with the effects of Magnetohydrodynamic fluid over a curved channel with slip effects. This work aims at evaluating the effect of Magnetohydrodynamic (MHD) on the steady two dimensional (2-D) mixed convection flow induced in carbon nanotubes. The work is done for both the single wall nanotube and multiple wall nanotube. The right wall and the left wall possess a metachronal wave that is travelling along the outer boundary of the channel. Methods: The wavelength is considered as very large for cilia induced MHD flow. The governing linear coupled equations are simplified by considering the approximations of long wavelength and small Reynolds number. Exact solutions are obtained for temperature and velocity profile. The analytical expressions for the pressure gradient and wall shear stresses are obtained. Term for pressure rise is obtained by applying Numerical integration method. Results: Numerical results of velocity profile are mentioned in a table form, for various values of solid volume fraction, curvature, Hartmann number [M] and Casson fluid parameter [ζ]. Final section of this paper is devoted to discussing the graphical results of temperature, pressure gradient, pressure rise, shear stresses and stream functions. Conclusion: Velocity profile near the right wall of the channel decreases when we add nanoparticles into our base fluid, whereas an opposite behaviour is depicted near the left wall due to ciliated tips whereas the temperature is an increasing function of B and ߛ and decreasing function of ߶.


2021 ◽  
Author(s):  
Patrick Wilms ◽  
Jan Wieringa ◽  
Theo Blijdenstein ◽  
Kees van Malssen ◽  
Reinhard Kohlus

AbstractThe rheological characterization of concentrated suspensions is complicated by the heterogeneous nature of their flow. In this contribution, the shear viscosity and wall slip velocity are quantified for highly concentrated suspensions (solid volume fractions of 0.55–0.60, D4,3 ~ 5 µm). The shear viscosity was determined using a high-pressure capillary rheometer equipped with a 3D-printed die that has a grooved surface of the internal flow channel. The wall slip velocity was then calculated from the difference between the apparent shear rates through a rough and smooth die, at identical wall shear stress. The influence of liquid phase rheology on the wall slip velocity was investigated by using different thickeners, resulting in different degrees of shear rate dependency, i.e. the flow indices varied between 0.20 and 1.00. The wall slip velocity scaled with the flow index of the liquid phase at a solid volume fraction of 0.60 and showed increasingly large deviations with decreasing solid volume fraction. It is hypothesized that these deviations are related to shear-induced migration of solids and macromolecules due to the large shear stress and shear rate gradients.


Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


2021 ◽  
pp. 152808372110013
Author(s):  
Vivek R Jayan ◽  
Lekhani Tripathi ◽  
Promoda Kumar Behera ◽  
Michal Petru ◽  
BK Behera

The internal geometry of composite material is one of the most important factors that influence its performance and service life. A new approach is proposed for the prediction of internal geometry and tensile behavior of the 3 D (three dimensional) woven fabrics by creating the unit cell using mathematical coding. In many technical applications, textile materials are subjected to rates of loading or straining that may be much greater in magnitude than the regular household applications of these materials. The main aim of this study is to provide a generalized method for all the structures. By mathematical coding, unit cells of 3 D woven orthogonal, warp interlock and angle interlock structures have been created. The study then focuses on developing code to analyze the geometrical parameters of the fabric like fabric thickness, areal density, and fiber volume fraction. Then, the tensile behavior of the coded 3 D structures is studied in Ansys platform and the results are compared with experimental values for authentication of geometrical parameters as well as for tensile behavior. The results show that the mathematical coding approach is a more efficient modeling technique with an acceptable error percentage.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anum Shafiq ◽  
Tabassum Naz Sindhu ◽  
Qasem M. Al-Mdallal

AbstractThe current research explores incremental effect of thermal radiation on heat transfer improvement corresponds to Darcy–Forchheimer (DF) flow of carbon nanotubes along a stretched rotating surface using RSM. Casson carbon nanotubes’ constructed model in boundary layer flow is being investigated with implications of both single-walled CNTs and multi-walled CNTs. Water and Ethylene glycol are considered a basic fluid. The heat transfer rate is scrutinized via convective condition. Outcomes are observed and evaluated for both SWCNTs and MWCNTs. The Runge–Kutta Fehlberg technique of shooting is utilized to numerically solve transformed nonlinear ordinary differential system. The output parameters of interest are presumed to depend on governing input variables. In addition, sensitivity study is incorporated. It is noted that sensitivity of SFC via SWCNT-Water becomes higher by increasing values of permeability number. Additionaly, sensitivity of SFC via SWCNT-water towards the permeability number is higher than the solid volume fraction for medium and higher permeability levels. It is also noted that sensitivity of SFC (SWCNT-Ethylene-glycol) towards volume fraction is higher for increasing permeability as well as inertia coefficient. Additionally, the sensitivity of LNN towards the Solid volume fraction is higher than the radiation and Biot number for all levels of Biot number. The findings will provide initial direction for future device manufacturing.


Metals ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 1038
Author(s):  
Niroj Maharjan ◽  
Ayan Bhowmik ◽  
Chunwai Kum ◽  
Jiakun Hu ◽  
Yongjing Yang ◽  
...  

Cold spray is an emerging additive manufacturing technology used in the aerospace industry to repair damaged components made of expensive metal alloys. The cold sprayed layer is prone to surface integrity issues such as high porosity and inadequate bonding at the substrate-coating interface, which may cause premature failure of the repaired component. This study explored the use of mechanical peening as a post-processing method to improve the surface integrity of the cold sprayed component by modifying mechanical properties near the surface. Two mechanical peening processes, deep cold rolling (DCR) and controlled hammer peening (CHP), were utilized to improve cold sprayed Ti-6Al-4V coating on the Ti-6Al-4V substrate. Experimental results indicate that DCR and CHP increase the strength of the bond between the coating and substrate due to introduction of compressive residual stresses. In addition, porosity is also reduced by as much as 71%. The improvement is attributed to both the compacting effect of peening processes and the increment in the volume fraction of deformed regions.


Author(s):  
R Tabassum ◽  
Rashid Mehmood ◽  
O Pourmehran ◽  
NS Akbar ◽  
M Gorji-Bandpy

The dynamic properties of nanofluids have made them an area of intense research during the past few decades. In this article, flow of nonaligned stagnation point nanofluid is investigated. Copper–water based nanofluid in the presence of temperature-dependent viscosity is taken into account. The governing nonlinear coupled ordinary differential equations transformed by partial differential equations are solved numerically by using fourth-order Runge–Kutta–Fehlberg integration technique. Effects of variable viscosity parameter on velocity and temperature profiles of pure fluid and copper–water nanofluid are analyzed, discussed, and presented graphically. Streamlines, skin friction coefficients, and local heat flux of nanofluid under the impact of variable viscosity parameter, stretching ratio, and solid volume fraction of nanoparticles are also displayed and discussed. It is observed that an increase in solid volume fraction of nanoparticles enhances the magnitude of normal skin friction coefficient, tangential skin friction coefficient, and local heat flux. Viscosity parameter is found to have decreasing effect on normal and tangential skin friction coefficients whereas it has a positive influence on local heat flux.


Sign in / Sign up

Export Citation Format

Share Document