scholarly journals Entropy generation of zirconia-water nanofluid flow through rectangular micro-channel

2018 ◽  
Vol 22 (Suppl. 5) ◽  
pp. 1395-1405
Author(s):  
Cuneyt Uysal ◽  
Kamil Arslan ◽  
Huseyin Kurt

The fluid flow and heat transfer characteristics and entropy generation of zirconia, ZrO2-water, nanofluid flow through a rectangular micro-channel are numerically investigated. The flow is considered under single-phase 3-D steady-state incompressible laminar flow conditions. The constant heat flux is applied to the bottom surface of micro-channel. The finite volume method is used to discretize the governing equations. As a result, the average Nusselt number decreases with increasing nanoparticle volume fraction, while the average Darcy friction factor is not affected. Moreover, the total entropy generation decreases with increase in nanoparticle volume fraction, while the Bejan number is almost not affected.

Author(s):  
Mostefaoui Amina ◽  
Saim Rachid ◽  
Abboudi Saïd

In this present article, a study of the dynamic and thermal behavior of the Al2O3-water nanofluid flow through a channel provided with trapezoidal undulations, under the action of a constant heat flux. To do this, the effect of various volume fractions (0-4%) and that of the nanoparticle diameter (30, 40, 60 nm) on the heat transfer and pressure drop within the channel was analyzed, for a range of Reynolds numbers between 100 to 1000. The equations governing the fluid flow, namely the equations of continuity, momentum and energy were integrated and discretized based on the finite volume method (FVM). The obtained results indicated that using nanofluids with a high-volume fraction and a small nanoparticle diameter makes it possible to improve the performance of the system in terms of heat transfer, pressure drop and friction factor.


2021 ◽  
Author(s):  
M R Acharya ◽  
P Mishra ◽  
Satyananda Panda

Abstract This paper analyses the augmentation entropy generation number for a viscous nanofluid flow over a non-isothermal wedge including the effects of non-linear radiation and activation energy. We discuss the influence of thermodynamically important parameters during the study, namely, the Bejan number, entropy generation number, and the augmentation entropy generation number. The mathematical formulation for thermal conductivity and viscosity of nanofluid for Al2O3 − EG mixture has been considered. The results were numerically computed using implicit Keller-Box method and depicted graphically. The important result is the change in augmentation entropy generation number with Reynolds number. We observed that adding nanoparticles (volume fraction) tend to enhance augmentation entropy generation number for Al2O3 − EG nanofluid. Further, the investigation on the thermodynamic performance of non-isothermal nanofluid flow over a wedge reveals that adding nanoparticles to the base fluid is effective only when the contribution of heat transfer irreversibility is more than fluid friction irreversibility. This work also discusses the physical interpretation of heat transfer irreversibility and pressure drop irreversibility. This dependency includes Reynolds number and volume fraction parameter. Other than these, the research looked at a variety of physical characteristics associated with the flow of fluid, heat and mass transfer.


2020 ◽  
Vol 307 ◽  
pp. 01010 ◽  
Author(s):  
Ahlem Boudiaf ◽  
Fetta Danane ◽  
Youb Khaled Benkahla ◽  
Walid Berabou ◽  
Mahdi Benzema ◽  
...  

This paper presents the numerical predictions of hydrodynamic and thermal characteristics of nanofluid flow through backward facing step. The governing equations are solved through the finite volume method, as described by Patankar, by taking into account the associated boundary conditions. Empirical relations were used to give the effective dynamic viscosity and the thermal conductivity of the nanofluid. Effects of different key parameters such as Reynolds number, nanoparticle solid volume fraction and nanoparticle solid diameter on the heat transfer and fluid flow are investigated. The results are discussed in terms of the average Nusselt number and streamlines.


Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 1008
Author(s):  
Ehsan Aminian ◽  
Hesam Moghadasi ◽  
Hamid Saffari ◽  
Amir Mirza Gheitaghy

Corrugating channel wall is considered to be an efficient procedure for achieving improved heat transfer. Further enhancement can be obtained through the utilization of nanofluids and porous media with high thermal conductivity. This paper presents the effect of geometrical parameters for the determination of an appropriate configuration. Furthermore, the optimization of forced convective heat transfer and fluid/nanofluid flow through a sinusoidal wavy-channel inside a porous medium is performed through the optimization of entropy generation. The fluid flow in porous media is considered to be laminar and Darcy–Brinkman–Forchheimer model has been utilized. The obtained results were compared with the corresponding numerical data in order to ensure the accuracy and reliability of the numerical procedure. As a result, increasing the Darcy number leads to the increased portion of thermal entropy generation as well as the decreased portion of frictional entropy generation in all configurations. Moreover, configuration with wavelength of 10 mm, amplitude of 0.5 mm and phase shift of 60° was selected as an optimum geometry for further investigations on the addition of nanoparticles. Additionally, increasing trend of average Nusselt number and friction factor, besides the decreasing trend of performance evaluation criteria (PEC) index, were inferred by increasing the volume fraction of the nanofluid (Al2O3 and CuO).


2021 ◽  
Vol 51 (4) ◽  
pp. 249-254
Author(s):  
Utpal Jyoti Das

The present paper examines the entropy generation on MHD flow of viscous fluid over a deformable vertical porous layer with constant injection/ suction velocity at the   boundary walls of the layer. The combined phenomenon of the solid deformation and fluid movement in the porous medium are taken into consideration. The influence of relevant non-dimensional parameters on the fluid velocity, solid displacement, temperature and concentration profiles are discussed. Also, the impact of Brinkman number, volume fraction parameter and drag parameter on entropy generation and Bejan number are discussed.


2015 ◽  
Vol 93 (12) ◽  
pp. 1615-1629 ◽  
Author(s):  
Zouhaier Mehrez ◽  
Afif El Cafsi ◽  
Ali Belghith ◽  
Patrick Le Quéré

This paper reports the numerical results of the mixed convection and entropy generation of Cu–water nanofluid flow in an open cavity heated from different sides with non-uniform temperature distribution. The finite volume method is used to solve the governing equations. The analysis is carried out by a range of Richardson numbers, 0.01 ≤ Ri ≤ 10, at a nanoparticle volume fraction of 0 ≤ [Formula: see text] ≤ 0.1, and Reynolds number Re = 200, with a cavity aspect ratio of L/H = 2. Three heating modes are considered: (A) the left wall is heated (inflow side, assisting flow); (B) the horizontal bottom wall is heated; and (C) the right wall is heated (outflow side, opposing flow). The results show that the heat transfer and the entropy generation increase with increasing Richardson number and nanoparticle volume fraction. The highest heat transfer and entropy generation are obtained with heating mode C (opposing flow). The contribution of heat transfer and fluid friction irreversibilities in the entropy generation depends on Richardson number and the heater position. The present investigation shows that the configuration with non-isothermal heater located at the bottom wall (B) has the highest performance in terms of heat transfer enhancement with minimum entropy generation.


2020 ◽  
Vol 16 (6) ◽  
pp. 1521-1538 ◽  
Author(s):  
N.S. Shashikumar ◽  
Madhu Macha ◽  
B.J. Gireesha ◽  
Naikoti Kishan

PurposeIn recent years, microfluidics has turned into a very important region of research because of its wide range of applications such as microheat exchanger, micromixers fuel cells, cooling systems for microelectronic devices, micropumps and microturbines. Therefore, in this paper, micropolar nanofluid flow through an inclined microchannel is numerically investigated in the presence of convective boundary conditions. Heat transport of fluid includes radiative heat, viscous and Joule heating phenomena.Design/methodology/approachGoverning equations are nondimensionalized by using suitable dimensionless variables. The relevant dimensionless ordinary differential systems are solved by using variational finite element method. Detailed computations are done for velocity, microrotation and temperature functions. The influence of various parameters on entropy generation and the Bejan number is displayed and discussed.FindingsIt is established that the entropy generation rate increased with both Grashof number and Eckert number, while it decreased with nanoparticle volume fraction and material parameter. Temperature is decreased by increasing the volume fraction of Ag nanoparticle dispersed in water.Originality/valueAccording to the literature survey and the best of the author’s knowledge, no similar studies have been executed on micropolar nanofluid flow through an inclined microchannel with effect of viscous dissipation, Joule heating and thermal radiation.


2016 ◽  
Vol 20 (6) ◽  
pp. 2037-2050 ◽  
Author(s):  
Ghanbarali Sheikhzadeh ◽  
Alireza Aghaei ◽  
Hamidreza Ehteram ◽  
Mahmoud Abbaszadeh

In this study, thermo-physical and geometrical parameters affecting entropy generation of nanofluid turbulent flow such as the volume fraction, Reynolds number and diameter of the channel and micro-channel with circular cross section under constant flux are examined analytically. Water is used as a base fluid of nanofluid with nanoparticles of Ag, Cu, CuO and TiO2. The study is conducted for Reynolds numbers of 20000, 40000 and 100000, volume fractions of 0, 0.01, 0.02, 0.03 and 0.04, channel diameters of 2, 4, 6 and 8 cm and micro-channel diameters of 20, 40, 60 and 80 micrometers. Based on the results, the most of the generated entropy in channel is due to heat transfer, and also, with increasing the diameter of the channel, Bejan number increases. The contribution of entropy generation due to heat transfer in the micro-channel is very poor and the major contribution of entropy generation is due to friction. The maximum amount of entropy generation in channel belongs to nanofluids with Ag, Cu, CuO and TiO2 nanoparticles, respectively, while in the micro-channel this behavior is reversed; and the minimum entropy generation happens in nanofluids with Ag, Cu, CuO and TiO2 nanoparticles, respectively. In channel and micro-channel, for all nanofluids except for the water-TiO2, with increasing volume fraction of nanoparticles, the entropy generation decreases. In channel and micro-channel, the total entropy generation increases as Reynolds number augments.


2021 ◽  
Vol 3 (3) ◽  
Author(s):  
Mahbuba Tasmin ◽  
Preetom Nag ◽  
Zarin T. Hoque ◽  
Md. Mamun Molla

AbstractA numerical study on heat transfer and entropy generation in natural convection of non-Newtonian nanofluid flow has been explored within a differentially heated two-dimensional wavy porous cavity. In the present study, copper (Cu)–water nanofluid is considered for the investigation where the specific behavior of Cu nanoparticles in water is considered to behave as non-Newtonian based on previously established experimental results. The power-law model and the Brinkman-extended Darcy model has been used to characterize the non-Newtonian porous medium. The governing equations of the flow are solved using the finite volume method with the collocated grid arrangement. Numerical results are presented through streamlines, isotherms, local Nusselt number and entropy generation rate to study the effects of a range of Darcy number (Da), volume fractions (ϕ) of nanofluids, Rayleigh numbers (Ra), and the power-law index (n). Results show that the rate of heat transfer from the wavy wall to the medium becomes enhanced by decreasing the power-law index but increasing the volume fraction of nanoparticles. Increase of porosity level and buoyancy forces of the medium augments flow strength and results in a thinner boundary layer within the cavity. At negligible porosity level of the enclosure, effect of volume fraction of nanoparticles over thermal conductivity of the nanofluids is imperceptible. Interestingly, when the Darcy–Rayleigh number $$Ra^*\gg 10$$ R a ∗ ≫ 10 , the power-law effect becomes more significant than the volume fraction effect in the augmentation of the convective heat transfer process. The local entropy generation is highly dominated by heat transfer irreversibility within the porous enclosure for all conditions of the flow medium. The particular wavy shape of the cavity strongly influences the heat transfer flow pattern and local entropy generation. Interestingly, contour graphs of local entropy generation and local Bejan number show a rotationally symmetric pattern of order two about the center of the wavy cavity.


Sign in / Sign up

Export Citation Format

Share Document