scholarly journals Evaluation of toxicity and response to oxidative stress generated by orthodontic bands in human gingival fibroblasts

2019 ◽  
Vol 90 (2) ◽  
pp. 285-290 ◽  
Author(s):  
Alexandre Marcos Bandeira ◽  
Elizabeth Ferreira Martinez ◽  
Ana Paula Dias Demasi

ABSTRACT Objective: To evaluate the cytotoxicity of stainless-steel orthodontic bands and their influence on the expression of the antioxidant genes in human gingival fibroblasts. Materials and Methods: Ten bands of each brand (Dentsply-Sirona, Dentaurum, TP Orthodontics, and Morelli) were conditioned in 0.2 g/mL culture medium at 37°C for 14 days, and the corresponding conditioned media were applied over the fibroblasts. Cell viability was assessed after 24, 48, and 72 hours of exposure to the conditioned media by trypan blue exclusion assay. Expression of the antioxidant defense genes peroxiredoxin 1 (PRDX1), superoxide dismutase 1 (SOD1), and glutathione peroxidase 1 (GPX1) were evaluated by quantitative polymerase chain reaction after 24 hours of exposure. These parameters were compared to those of the cells not exposed to the conditioned media of the bands (control). Results: All bands promoted a reduction in the number of viable cells in the periods of 48 and 72 hours (P < .01). Analysis of gene expression showed a significant increase in the levels of PRDX1 transcripts caused by the conditioned media of the Dentsply-Sirona, TP Orthodontics, and Morelli bands (P < .01) as well as induction of SOD1 by the conditioned media of the Dentaurum and Morelli (P < .01). Expression of GPX1 was not influenced by the conditioned media. Conclusions: The orthodontic bands showed toxicity to fibroblasts and increased the expression of PRDX1 and SOD1 antioxidant genes, indicating induction of oxidative stress in the cells.

Antioxidants ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 530 ◽  
Author(s):  
Eugenie Mussard ◽  
Sundy Jousselin ◽  
Annabelle Cesaro ◽  
Brigitte Legrain ◽  
Eric Lespessailles ◽  
...  

Andrographis paniculata was widely used in traditional herbal medicine to treat various diseases. This study explored the potential anti-aging activity of Andrographis paniculata in cutaneous cells. Human, adult, low calcium, high temperature (HaCaT) cells were treated with methanolic extract (ME), andrographolide (ANDRO), neoandrographolide (NEO), 14-deoxyandrographolide (14DAP) and 14-deoxy-11,12-didehydroandrographolide (14DAP11-12). Oxidative stress and inflammation were induced by hydrogen peroxide and lipopolysaccharide/TNF-α, respectively. Reactive oxygen species (ROS) production was measured by fluorescence using a 2′,7′-dichlorofluorescein diacetate (DCFH-DA) probe and cytokines were quantified by ELISA for interleukin-8 (IL-8) or reverse transcription-quantitative polymerase chain reaction (RT-qPCR) for tumor necrosis factor-α (TNF-α). Hyaluronic acid (HA) secretion was determined by an ELISA. Our results show a decrease in ROS production and TNF-α expression by ME (5 µg/mL) in HaCaT under pro-oxidant and pro-inflammatory conditions, respectively. ME protected HaCaT against oxidative stress and inflammation. Our findings confirm that ME can be used for the development of bioactive compounds against epidermal damage.


2018 ◽  
Vol 12 (04) ◽  
pp. 585-589
Author(s):  
Marco Colombo ◽  
Matteo Ceci ◽  
Eleonora Felisa ◽  
Claudio Poggio ◽  
Giampiero Pietrocola

ABSTRACT Objective: The cytocompatibility of a new ozonized olive oil toward immortalized human gingival fibroblasts (HGFs) was evaluated and compared with two common antimicrobial agents based on chlorhexidine digluconate (CHX). Materials and Methods: The cytocompatibility of the samples was tested on immortalized HGF-1 cells by 3-(4, 5-dimethyl thiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were incubated for 2 or 24 h with increasing dilution of ozonized olive oil or CHX agents. The percentage of viable cells was calculated relative to control cells set to 100%. Results: The ozonized olive oil is cytocompatible, and the viability values of the cells treated for 2 or 24 h with increasing concentrations of ozonized olive oil were significantly higher (P < 0.01) compared with the values obtained using CHX. Conclusions: The present data demonstrate that due to its cytocompatibility, the new ozonized olive oil could be considered an alternative antibacterial agent.


2013 ◽  
Vol 84 (10) ◽  
pp. 1469-1475 ◽  
Author(s):  
Shiuan-Shinn Lee ◽  
Chung-Hung Tsai ◽  
Yu-Hsiang Kuan ◽  
Fu-Mei Huang ◽  
Yu-Chao Chang

Materials ◽  
2021 ◽  
Vol 14 (18) ◽  
pp. 5225
Author(s):  
Francesco De Angelis ◽  
Domitilla Mandatori ◽  
Valeria Schiavone ◽  
Francesco Paolo Melito ◽  
Silvia Valentinuzzi ◽  
...  

The aim of the study was to evaluate the cytotoxic and genotoxic potential of five commercially available dental composite resins (CRs), investigating the effect of their quantifiable bisphenol-A-glycidyl-methacrylate (Bis-GMA) and/or triethylene glycol dimethacrylate (TEGDMA) release. Experiments were performed using the method of soaking extracts, which were derived from the immersion of the following CRs in the culture medium: Clearfil-Majesty-ES-2, GrandioSO, and Enamel-plus-HRi (Bis-GMA-based); Enamel-BioFunction and VenusDiamond (Bis-GMA-free). Human Gingival Fibroblasts (hGDFs) were employed as the cellular model to mimic in vitro the oral cavity milieu, where CRs simultaneously release various components. Cell metabolic activity, oxidative stress, and genotoxicity were used as cellular outcomes. Results showed that only VenusDiamond and Enamel-plus-HRi significantly affected the hGDF cell metabolic activity. In accordance with this, although no CR-derived extract induced a significantly detectable oxidative stress, only VenusDiamond and Enamel-plus-HRi induced significant genotoxicity. Our findings showed, for the CRs employed, a cytotoxic and genotoxic potential that did not seem to depend only on the actual Bis-GMA or TEGDMA content. Enamel-BioFunction appeared optimal in terms of cytotoxicity, and similar findings were observed for Clearfil-Majesty-ES-2 despite their different Bis-GMA/TEGDMA release patterns. This suggested that simply excluding one specific monomer from the CR formulation might not steadily turn out as a successful approach for improving their biocompatibility.


Author(s):  
Yingzheng Zhao ◽  
Guangcui Xu ◽  
Haibin Li ◽  
Meiyu Chang ◽  
Cheng Xiong ◽  
...  

Abstract Background The immunomodulatory abnormalities of silicosis are related to the lymphocyte oxidative stress state. The potential effect of antioxidant therapy on silicosis may depend on the variation in nuclear factor erythroid 2-related factor 2 (NRF2)-regulated antioxidant genes in peripheral blood mononuclear cells (PBMCs). As NRF2 is a redox-sensitive transcription factor, its possible roles and underlying mechanism in the treatment of silicosis need to be clarified. Methods Ninety-two male patients with silicosis and 87 male healthy volunteers were randomly selected. PBMCs were isolated from fresh blood from patients with silicosis and healthy controls. The lymphocyte oxidative stress state was investigated by evaluating NRF2 expression and NRF2-dependent antioxidative genes in PBMCs from patients with silicosis. Key differentially expressed genes (DEGs) and signaling pathways were identified utilizing RNA sequencing (RNA-Seq) and bioinformatics technology. Gene set enrichment analysis was used to identify the differences in NRF2 signaling networks between patients with silicosis and healthy controls. Results The number of monocytes was significantly higher in patients with silicosis than that of healthy controls. Furthermore, RNA-Seq findings were confirmed using quantitative polymerase chain reaction and revealed that NRF2-regulated DEGs were associated with glutathione metabolism, transforming growth factor-β, and the extracellular matrix receptor interaction signaling pathway in PBMCs from patients with silicosis. The top 10 hub genes were identified by PPI analysis: SMAD2, MAPK3, THBS1, SMAD3, ITGB3, integrin alpha-V (ITGAV), von Willebrand factor (VWF), BMP4, CD44, and SMAD7. Conclusions These findings suggest that NRF2 signaling regulates the lymphocyte oxidative stress state and may contribute to fibrogenic responses in human PBMCs. Therefore, NRF2 might serve as a novel preventive and therapeutic candidate for silicosis.


2020 ◽  
Vol 21 (23) ◽  
pp. 9196
Author(s):  
Chang Ho Kang ◽  
Joung Hun Park ◽  
Eun Seon Lee ◽  
Seol Ki Paeng ◽  
Ho Byoung Chae ◽  
...  

In plants, thioredoxin (TRX) family proteins participate in various biological processes by regulating the oxidative stress response. However, their role in phytohormone signaling remains largely unknown. In this study, we investigated the functions of TRX proteins in Arabidopsis thaliana. Quantitative polymerase chain reaction (qPCR) experiments revealed that the expression of ARABIDOPSIS NUCLEOREDOXIN 1 (AtNRX1) is specifically induced by the application of jasmonic acid (JA) and upon inoculation with a necrotrophic fungal pathogen, Alternaria brassicicola. The AtNRX1 protein usually exists as a low molecular weight (LMW) monomer and functions as a reductase, but under oxidative stress AtNRX1 transforms into polymeric forms. However, the AtNRX1M3 mutant protein, harboring four cysteine-to-serine substitutions in the TRX domain, did not show structural modification under oxidative stress. The Arabidopsisatnrx1 null mutant showed greater resistance to A. brassicicola than wild-type plants. In addition, plants overexpressing both AtNRX1 and AtNRX1M3 were susceptible to A. brassicicola infection. Together, these findings suggest that AtNRX1 normally suppresses the expression of defense-responsive genes, as if it were a safety pin, but functions as a molecular sensor through its redox-dependent structural modification to induce disease resistance in plants.


2018 ◽  
Vol 19 (10) ◽  
pp. 3174 ◽  
Author(s):  
Jung Kim ◽  
Hyeong Kim ◽  
Chang Son

Oxidative stress is a common phenomenon and is linked to a wide range of diseases and pathological processes including aging. Tissue-specific variation in redox signaling and cellular responses to oxidative stress may be associated with vulnerability especially to age-related and chronic diseases. In order to provide a basis for tissue-specific difference, we examined the tissue-specific transcriptional features of 101 oxidative stress-associated genes in 10 different tissues and organs of healthy mice under physiological conditions. Microarray analysis results, which were consistent with quantitative polymerase chain reaction (qPCR) results, showed that catalase, Gpx3, and Gpx4 were most highly regulated in the liver, kidney, and testes. We also found the tissue-specific gene expression of SOD1 (liver and kidney), SOD2 (heart and muscle), and SOD3 (lung and kidney). The current results will serve as a reference for animal models and help advance our understanding of tissue-specific variability in oxidative stress-associated pathogenesis.


Sign in / Sign up

Export Citation Format

Share Document