Clinical Presentation and Underlying Mechanisms of Cutaneous Lymphoma ; Development of New Treatment Strategies

2017 ◽  
Vol 79 (4) ◽  
pp. 339-344
Author(s):  
Makoto SUGAYA
2019 ◽  
Vol 115 (13) ◽  
pp. 1838-1849 ◽  
Author(s):  
Christian Riehle ◽  
Johann Bauersachs

Abstract Heart disease is a major cause of death worldwide with increasing prevalence, which urges the development of new therapeutic strategies. Over the last few decades, numerous small animal models have been generated to mimic various pathomechanisms contributing to heart failure (HF). Despite some limitations, these animal models have greatly advanced our understanding of the pathogenesis of the different aetiologies of HF and paved the way to understanding the underlying mechanisms and development of successful treatments. These models utilize surgical techniques, genetic modifications, and pharmacological approaches. The present review discusses the strengths and limitations of commonly used small animal HF models, which continue to provide crucial insight and facilitate the development of new treatment strategies for patients with HF.


Author(s):  
Yang Yu ◽  
Yanwen Li ◽  
Xinjie Yang ◽  
Qiuyi Deng ◽  
Bin Xu ◽  
...  

Background: Despite emerging research on new treatment strategies, chemotherapy remains one of the most important therapeutic modalities for cancers. Imidazopyridines are important targets in organic chemistry and are worthy of attention given their numerous applications. Objective: To design and synthesize a novel series of imidazo[1,2-a]pyridine-derived compounds and investigate their antitumor effects and the underlying mechanisms. Methods: Imidazo[1,2-a]pyridine-derived compounds were synthesized with new strategies and conventional methods. The antitumor activities of the new compounds were evaluated by MTT assay. Flow cytometry and immunofluorescence were performed to examine the effects of the most effective antiproliferative compound on cell apoptosis. Western blot analysis was used to assess the expression of apoptotic proteins. Results: Fifty-two new imidazo[1,2-a]pyridine compounds were designed and successfully synthesized. The compound, 1-(imidazo[1,2-a]pyridin-3-yl)-2-(naphthalen-2-yl)ethane-1,2-dione, named La23, showed high potential for suppressing the viability of HeLa cells (IC50 15.32 μM). La23 inhibited cell proliferation by inducing cell apoptosis, and it reduced the mitochondrial membrane potential of HeLa cells. Moreover, treatment with La23 appeared to increase the expression of apoptotic-related protein P53, Bax, cleaved caspase-3, and cytochrome c at a low concentration range. Conclusion: The novel imidazo[1,2-a]pyridine compound, La23, was synthesized and suppressed cell growth by inducing cell apoptosis via the p53/Bax mitochondrial apoptotic pathway.


2020 ◽  
Vol 27 (8) ◽  
pp. 1367-1381 ◽  
Author(s):  
Sarah Visentin ◽  
Mirela Sedić ◽  
Sandra Kraljević Pavelić ◽  
Krešimir Pavelić

The metastatic process has still not been completely elucidated, probably due to insufficient knowledge of the underlying mechanisms. Here, we provide an overview of the current findings that shed light on specific molecular alterations associated with metastasis and present novel concepts in the treatment of the metastatic process. In particular, we discuss novel pharmacological approaches in the clinical setting that target metastatic progression. New insights into the process of metastasis allow optimisation and design of new treatment strategies, especially in view of the fact that metastatic cells share common features with stem cells. Nano- and micro-technologies are herein elaborated in details as a promising therapeutic concept in targeted drug delivery for metastatic cancer. Progression in the field could provide a more efficient way to tackle metastasis and thus bring about advancements in the treatment and management of patients with advanced cancer.


Author(s):  
Amrita Sarkar ◽  
Khadija Rafiq

Cardiovascular Disease (CVD) is a class of diseases that involve disorders of heart and blood vessels, including hypertension, coronary heart disease, cerebrovascular disease, peripheral vascular disease, which finally lead to Heart Failure (HF). There are several treatments available all over the world, but still, CVD and heart failure became the number one problem causing death every year worldwide. Both experimental and clinical studies have shown a role for inflammation in the pathogenesis of heart failure. This seems related to an imbalance between pro-inflammatory and anti-inflammatory cytokines. Cardiac inflammation is a major pathophysiological mechanism operating in the failing heart, regardless of HF aetiology. Disturbances of the cellular and humoral immune system are frequently observed in heart failure. This review describes how B-cells play a specific role in the heart failure states. There is an urgent need to identify novel therapeutic targets and develop advanced therapeutic strategies to combat the syndrome of HF. Understanding and describing the elements of the humoral immunity function are essential and may suggest potential new treatment strategies.


Oncogene ◽  
2021 ◽  
Author(s):  
Hsiu-Chi Lee ◽  
Chien-Hui Ou ◽  
Yun-Chen Huang ◽  
Pei-Chi Hou ◽  
Chad J. Creighton ◽  
...  

AbstractMetastatic castration-resistant prostate cancer (mCRPC) is a malignant and lethal disease caused by relapse after androgen-deprivation (ADT) therapy. Since enzalutamide is innovated and approved by US FDA as a new treatment option for mCRPC patients, drug resistance for enzalutamide is a critical issue during clinical usage. Although several underlying mechanisms causing enzalutamide resistance were previously identified, most of them revealed that drug resistant cells are still highly addicted to androgen and AR functions. Due to the numerous physical functions of AR in men, innovated AR-independent therapy might alleviate enzalutamide resistance and prevent production of adverse side effects. Here, we have identified that yes-associated protein 1 (YAP1) is overexpressed in enzalutamide-resistant (EnzaR) cells. Furthermore, enzalutamide-induced YAP1 expression is mediated through the function of chicken ovalbumin upstream promoter transcription factor 2 (COUP-TFII) at the transcriptional and the post-transcriptional levels. Functional analyses reveal that YAP1 positively regulates numerous genes related to cancer stemness and lipid metabolism and interacts with COUP-TFII to form a transcriptional complex. More importantly, YAP1 inhibitor attenuates the growth and cancer stemness of EnzaR cells in vitro and in vivo. Finally, YAP1, COUP-TFII, and miR-21 are detected in the extracellular vesicles (EVs) isolated from EnzaR cells and sera of patients. In addition, treatment with EnzaR-EVs induces the abilities of cancer stemness, lipid metabolism and enzalutamide resistance in its parental cells. Taken together, these results suggest that YAP1 might be a crucial factor involved in the development of enzalutamide resistance and can be an alternative therapeutic target in prostate cancer.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 265
Author(s):  
Maria-Luisa Pérez-Lozano ◽  
Annabelle Cesaro ◽  
Marija Mazor ◽  
Eric Esteve ◽  
Sabine Berteina-Raboin ◽  
...  

Osteoarthritis (OA) is a complex degenerative disease in which joint homeostasis is disrupted, leading to synovial inflammation, cartilage degradation, subchondral bone remodeling, and resulting in pain and joint disability. Yet, the development of new treatment strategies to restore the equilibrium of the osteoarthritic joint remains a challenge. Numerous studies have revealed that dietary components and/or natural products have anti-inflammatory, antioxidant, anti-bone-resorption, and anabolic potential and have received much attention toward the development of new therapeutic strategies for OA treatment. In the present review, we provide an overview of current and emerging natural-product-based research treatments for OA management by drawing attention to experimental, pre-clinical, and clinical models. Herein, we review current and emerging natural-product-based research treatments for OA management.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
Chao-Hung Kuo ◽  
Fu-Chen Kuo ◽  
Huang-Ming Hu ◽  
Chung-Jung Liu ◽  
Sophie S. W. Wang ◽  
...  

This paper reviews the literature about first-line therapies forH. pyloriinfection in recent years. First-line therapies are facing a challenge because of increasing treatment failure due to elevated antibiotics resistance. Several new treatment strategies that recently emerged to overcome antibiotic resistance have been surveyed. Alternative first-line therapies include bismuth-containing quadruple therapy, sequential therapy, concomitant therapy, and hybrid therapy. Levofloxacin-based therapy shows impressive efficacy but might be employed as rescue treatment due to rapidly raising resistance. Rifabutin-based therapy is also regarded as a rescue therapy. Several factors including antibiotics resistance, patient compliance, and CYP 2C19 genotypes could influence the outcome. Clinicians should use antibiotics according to local reports. It is recommended that triple therapy should not be used in areas with high clarithromycin resistance or dual clarithromycin and metronidazole resistance.


2021 ◽  
Vol 22 (4) ◽  
pp. 1824
Author(s):  
Matthias Mietsch ◽  
Rabea Hinkel

With cardiovascular diseases affecting millions of patients, new treatment strategies are urgently needed. The use of stem cell based approaches has been investigated during the last decades and promising effects have been achieved. However, the beneficial effect of stem cells has been found to being partly due to paracrine functions by alterations of their microenvironment and so an interesting field of research, the “stem- less” approaches has emerged over the last years using or altering the microenvironment, for example, via deletion of senescent cells, application of micro RNAs or by modifying the cellular energy metabolism via targeting mitochondria. Using autologous muscle-derived mitochondria for transplantations into the affected tissues has resulted in promising reports of improvements of cardiac functions in vitro and in vivo. However, since the targeted treatment group represents mainly elderly or otherwise sick patients, it is unclear whether and to what extent autologous mitochondria would exert their beneficial effects in these cases. Stem cells might represent better sources for mitochondria and could enhance the effect of mitochondrial transplantations. Therefore in this review we aim to provide an overview on aging effects of stem cells and mitochondria which might be important for mitochondrial transplantation and to give an overview on the current state in this field together with considerations worthwhile for further investigations.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Xu Zhou ◽  
Jingliang He ◽  
Jinbo Chen ◽  
Yu Cui ◽  
Zhenyu Ou ◽  
...  

Abstract Background Leydig cells reflect the activation of inflammation, decrease of androgen production, inhibition of cell growth and promotion of cell apoptosis under orchitis. Maternally expressed gene 3 (MEG3) exerts a crucial role in various human diseases, but under orchitis, the role and underlying molecular mechanism of MEG3 in Leydig cells remain unclear. Methods Lipofectamine 2000 was used for the cell transfections. qPCR and western blots assay were applied to assess the gene expression. ELISA assay was used to measure the TNFα, IL6 and testosterone secretion. CCK8 and EdU assay was employ to test the cell viability and proliferation respectively. Luciferase reporter and RIP assay were introduced to detect the binding of miR-93-5p with MEG3 and PTEN. Results Lipopolysaccharides (LPS) induced TNFα and IL6 secretion, lowered testosterone production, inhibited cell viability and proliferation, and induced cell apoptosis in Leydig cells. MEG3 was upregulated in Leydig cells treated with LPS and that knockdown of MEG3 inhibited the role of LPS in Leydig cells. MEG3 absorbed miR-93-5p and that suppression of miR-93-5p restored the role of silenced MEG3 in Leydig cells under LPS treatment. miR-93-5p inhibited PTEN expression and that over-expressed PTEN alleviated the effect of miR-93-5p in Leydig cells treated with LPS. LPS activated the MEG3/miR-93-5p/PTEN signalling pathway in Leydig cells. Conclusions This study revealed that MEG3 serves as a molecular sponge to absorb miR-93-5p, thus leading to elevation of PTEN expression in Leydig cells under LPS treatment, offering a theoretical basis on which to establish potential new treatment strategies for orchitis.


Sign in / Sign up

Export Citation Format

Share Document