scholarly journals Chromogranin A Deficiency Confers Protection from Autoimmune Diabetes Via Multiple Mechanisms

Author(s):  
Virginia M Stone ◽  
Marta Butrym ◽  
Minna M Hankaniemi ◽  
Amir-Babak Sioofy-Khojine ◽  
Vesa P Hytönen ◽  
...  

Enteroviruses, including the Coxsackievirus Bs (CVB), have been implicated as causal agents in human type 1 diabetes. Immunization of at-risk individuals with a CVB vaccine provides an attractive strategy for elucidating the role of CVBs in the disease etiology. Previously we have shown that an inactivated whole-virus vaccine covering all CVB serotypes (CVB1-6) is safe to administer and highly immunogenic in preclinical models, including non-human primates. Before initiating clinical trials with this type of vaccine it was also important to address whether a) the vaccine itself induces adverse immune reactions including accelerating diabetes onset in a diabetes prone host and b) the vaccine can prevent CVB induced diabetes in a well-established disease model. Here we present results from studies in which female NOD mice were left untreated, mock-vaccinated or vaccinated with CVB1-6 vaccine and monitored for insulitis occurrence or diabetes development. We demonstrate that vaccination induces virus neutralizing antibodies without altering insulitis scores or the onset of diabetes. We also show that NOD mice vaccinated with a CVB1 vaccine are protected from CVB-induced accelerated disease onset. Taken together, these studies show that CVB vaccines do not alter islet inflammation or accelerate disease progression in an animal model that spontaneously develops autoimmune type 1 diabetes. However, they can prevent CVB-mediated disease progression in the same model. <b></b>

2021 ◽  
Author(s):  
Virginia M Stone ◽  
Marta Butrym ◽  
Minna M Hankaniemi ◽  
Amir-Babak Sioofy-Khojine ◽  
Vesa P Hytönen ◽  
...  

Enteroviruses, including the Coxsackievirus Bs (CVB), have been implicated as causal agents in human type 1 diabetes. Immunization of at-risk individuals with a CVB vaccine provides an attractive strategy for elucidating the role of CVBs in the disease etiology. Previously we have shown that an inactivated whole-virus vaccine covering all CVB serotypes (CVB1-6) is safe to administer and highly immunogenic in preclinical models, including non-human primates. Before initiating clinical trials with this type of vaccine it was also important to address whether a) the vaccine itself induces adverse immune reactions including accelerating diabetes onset in a diabetes prone host and b) the vaccine can prevent CVB induced diabetes in a well-established disease model. Here we present results from studies in which female NOD mice were left untreated, mock-vaccinated or vaccinated with CVB1-6 vaccine and monitored for insulitis occurrence or diabetes development. We demonstrate that vaccination induces virus neutralizing antibodies without altering insulitis scores or the onset of diabetes. We also show that NOD mice vaccinated with a CVB1 vaccine are protected from CVB-induced accelerated disease onset. Taken together, these studies show that CVB vaccines do not alter islet inflammation or accelerate disease progression in an animal model that spontaneously develops autoimmune type 1 diabetes. However, they can prevent CVB-mediated disease progression in the same model. <b></b>


2021 ◽  
Author(s):  
Virginia M Stone ◽  
Marta Butrym ◽  
Minna M Hankaniemi ◽  
Amir-Babak Sioofy-Khojine ◽  
Vesa P Hytönen ◽  
...  

Enteroviruses, including the Coxsackievirus Bs (CVB), have been implicated as causal agents in human type 1 diabetes. Immunization of at-risk individuals with a CVB vaccine provides an attractive strategy for elucidating the role of CVBs in the disease etiology. Previously we have shown that an inactivated whole-virus vaccine covering all CVB serotypes (CVB1-6) is safe to administer and highly immunogenic in preclinical models, including non-human primates. Before initiating clinical trials with this type of vaccine it was also important to address whether a) the vaccine itself induces adverse immune reactions including accelerating diabetes onset in a diabetes prone host and b) the vaccine can prevent CVB induced diabetes in a well-established disease model. Here we present results from studies in which female NOD mice were left untreated, mock-vaccinated or vaccinated with CVB1-6 vaccine and monitored for insulitis occurrence or diabetes development. We demonstrate that vaccination induces virus neutralizing antibodies without altering insulitis scores or the onset of diabetes. We also show that NOD mice vaccinated with a CVB1 vaccine are protected from CVB-induced accelerated disease onset. Taken together, these studies show that CVB vaccines do not alter islet inflammation or accelerate disease progression in an animal model that spontaneously develops autoimmune type 1 diabetes. However, they can prevent CVB-mediated disease progression in the same model. <b></b>


2021 ◽  
Author(s):  
Virginia M Stone ◽  
Marta Butrym ◽  
Minna M Hankaniemi ◽  
Amir-Babak Sioofy-Khojine ◽  
Vesa P Hytönen ◽  
...  

Enteroviruses, including the Coxsackievirus Bs (CVB), have been implicated as causal agents in human type 1 diabetes. Immunization of at-risk individuals with a CVB vaccine provides an attractive strategy for elucidating the role of CVBs in the disease etiology. Previously we have shown that an inactivated whole-virus vaccine covering all CVB serotypes (CVB1-6) is safe to administer and highly immunogenic in preclinical models, including non-human primates. Before initiating clinical trials with this type of vaccine it was also important to address whether a) the vaccine itself induces adverse immune reactions including accelerating diabetes onset in a diabetes prone host and b) the vaccine can prevent CVB induced diabetes in a well-established disease model. Here we present results from studies in which female NOD mice were left untreated, mock-vaccinated or vaccinated with CVB1-6 vaccine and monitored for insulitis occurrence or diabetes development. We demonstrate that vaccination induces virus neutralizing antibodies without altering insulitis scores or the onset of diabetes. We also show that NOD mice vaccinated with a CVB1 vaccine are protected from CVB-induced accelerated disease onset. Taken together, these studies show that CVB vaccines do not alter islet inflammation or accelerate disease progression in an animal model that spontaneously develops autoimmune type 1 diabetes. However, they can prevent CVB-mediated disease progression in the same model. <b></b>


1992 ◽  
Vol 175 (5) ◽  
pp. 1409-1412 ◽  
Author(s):  
H S Fox

The nonobese diabetic (NOD) mouse strain provides a model system for human autoimmune diabetes. This disease model is extensively used not only to examine the etiology and pathogenesis of diabetes, but also as a means to evaluate therapies. In NOD mice, the disease progresses from insulitis to islet destruction and clinical diabetes in a high percentage of female mice. In this study, androgen therapy, begun after the onset of insulitis, was found to prevent islet destruction and diabetes without eliminating the islet inflammation in female NOD mice. However, diabetes can be adoptively transferred into such hormone-treated recipients. The prevention of disease onset by androgen is likely due to the hormonal alteration of the development or function of the immune cells necessary for islet destruction.


2020 ◽  
Vol 134 (13) ◽  
pp. 1679-1696 ◽  
Author(s):  
Lingling Shu ◽  
Ling Zhong ◽  
Yang Xiao ◽  
Xiaoping Wu ◽  
Yang Liu ◽  
...  

Abstract Type 1 diabetes is an autoimmune disease resulted from self-destruction of insulin-producing pancreatic β cells. However, the pathological pathways that trigger the autoimmune destruction remain poorly understood. Clinical studies have demonstrated close associations of neutrophils and neutrophil elastase (NE) with β-cell autoimmunity in patients with Type 1 diabetes. The present study aims to investigate the impact of NE inhibition on development of autoimmune diabetes in NOD mice. NE pharmacological inhibitor (sivelestat) or biological inhibitor (elafin) was supplemented into NOD mice to evaluate their effects on islet inflammation and diabetogenesis. The impact of NE inhibition on innate and adaptive immune cells was measured with flow cytometry and immunohistochemistry. A significant but transient increase in neutrophil infiltration accompanied with elevated NE activity was observed in the neonatal period of NOD mice. Treatment of NOD mice with sivelestat or elafin at the early age led to a marked reduction in spontaneous development of insulitis and autoimmune diabetes. Mechanistically, inhibition of NE significantly attenuated infiltration of macrophages and islet inflammation, thus ameliorating cytotoxic T cell-mediated autoimmune attack of pancreatic β cells. In vitro studies showed that NE directly induced inflammatory responses in both min6 β cells and RAW264.7 macrophages, and promoted macrophage migration. These findings support an important role of NE in triggering the onset and progression of β-cell autoimmunity, and suggest that pharmacological inhibition of NE may represent a promising therapeutic strategy for treatment of autoimmune diabetes.


2019 ◽  
Author(s):  
Colleen M. Elso ◽  
Nicholas A. Scott ◽  
Lina Mariana ◽  
Emma I. Masterman ◽  
Andrew P.R. Sutherland ◽  
...  

AbstractType 1, or autoimmune, diabetes is caused by the T-cell mediated destruction of the insulin-producing pancreatic beta cells. Non-obese diabetic (NOD) mice spontaneously develop autoimmune diabetes akin to human type 1 diabetes. For this reason, the NOD mouse has been the preeminent murine model for human type 1 diabetes research for several decades. However, humanized mouse models are highly sought after because they offer both the experimental tractability of a mouse model and the clinical relevance of human-based research. Autoimmune T-cell responses against insulin, and its precursor proinsulin, play central roles in the autoimmune responses against pancreatic beta cells in both humans and NOD mice. As a first step towards developing a murine model of the human autoimmune response against pancreatic beta cells we set out to replace the murine insulin 1 gene (Ins1) with the human insulin gene (INS) using CRISPR/Cas9. Here we describe a NOD mouse strain that expresses human insulin in place of murine insulin 1, referred to as HuPI. HuPI mice express human insulin, and C-peptide, in their serum and pancreata and have normal glucose tolerance. Compared with wild type NOD mice, the incidence of diabetes is much lower in HuPI mice. Only 15-20% of HuPI mice developed diabetes after 300 days, compared to more than 60% of unmodified NOD mice. Immune-cell infiltration into the pancreatic islets of HuPI mice was not detectable at 100 days but was clearly evident by 300 days. This work highlights the feasibility of using CRISPR/Cas9 to create mouse models of human diseases that express proteins pivotal to the human disease. Furthermore, it reveals that even subtle changes in proinsulin protect NOD mice from diabetes.


2019 ◽  
Vol 4 (38) ◽  
pp. eaaw6329 ◽  
Author(s):  
Louis Gioia ◽  
Marie Holt ◽  
Anne Costanzo ◽  
Siddhartha Sharma ◽  
Brian Abe ◽  
...  

The class II region of the major histocompatibility complex (MHC) locus is the main contributor to the genetic susceptibility to type 1 diabetes (T1D). The loss of an aspartic acid at position 57 of diabetogenic HLA-DQβ chains supports this association; this single amino acid change influences how TCRs recognize peptides in the context of HLA-DQ8 and I-Ag7 using a mechanism termed the P9 switch. Here, we built register-specific insulin peptide MHC tetramers to examine CD4+ T cell responses to Ins12–20 and Ins13–21 peptides during the early prediabetic phase of disease in nonobese diabetic (NOD) mice. A single-cell analysis of anti-insulin CD4+ T cells performed in 6- and 12-week-old NOD mice revealed tissue-specific gene expression signatures. TCR signaling and clonal expansion were found only in the islets of Langerhans and produced either classical TH1 differentiation or an unusual Treg phenotype, independent of TCR usage. The early phase of the anti-insulin response was dominated by T cells specific for Ins12–20, the register that supports a P9 switch mode of recognition. The presence of the P9 switch was demonstrated by TCR sequencing, reexpression, mutagenesis, and functional testing of TCRαβ pairs in vitro. Genetic correction of the I-Aβ57 mutation in NOD mice resulted in the disappearance of D/E residues in the CDR3β of anti-Ins12–20 T cells. These results provide a mechanistic molecular explanation that links the characteristic MHC class II polymorphism of T1D with the recognition of islet autoantigens and disease onset.


Diabetes ◽  
2017 ◽  
Vol 66 (6) ◽  
pp. 1443-1452 ◽  
Author(s):  
Allison L. O’Kell ◽  
Clive Wasserfall ◽  
Brian Catchpole ◽  
Lucy J. Davison ◽  
Rebecka S. Hess ◽  
...  

2005 ◽  
Vol 2005 (4) ◽  
pp. 202-209 ◽  
Author(s):  
Naxin Sun ◽  
Guiwen Yang ◽  
Heng Zhao ◽  
Huub F. J. Savelkoul ◽  
Liguo An

Macrophages (Mp) are implicated in both early and late phases in type 1 diabetes development. Recent study has suggested that a balance between reductive Mp (RMp) and oxidative Mp (OMp) is possible to regulate TH1/TH2 balance. The aim of this study is to investigate the redox status of peritoneal Mp and its cytokine profile during the development of autoimmune diabetes induced by multiple low-dose streptozotocin in BALB/c mice. Meanwhile, the polarization of TH1/TH2 of splenocytes or thymocytes was also examined. We found that peritoneal Mp appeared as an “incomplete” OMp phenotype with decreased icGSH along with disease progression. The OMp showed reduced TNF-α, IL-12, and NO production as well as defective phagocytosis activity compared to nondiabetic controls; however, there was no significant difference with IL-6 production. On the other hand, the levels of IFN-γor IL-4 of splenocytes in diabetic mice were significantly higher compared to the control mice. The ratio of IFN-γto IL-4 was also higher at the early stage of diabetes and then declined several weeks later after the occurrence of diabetes, suggesting a pathogenetic TH1 phenotype from the beginning gradually to a tendency of TH2 during the development of diabetes. Our results implied that likely OMp may be relevant in the development of type 1 diabetes; however, it is not likely the only factor regulating the TH1H/TH2 balance in MLD-STZ-induced diabetic mice.


2020 ◽  
Author(s):  
Heejoo Kim ◽  
Jelena Perovanovic ◽  
Arvind Shakya ◽  
Zuolian Shen ◽  
Cody N. German ◽  
...  

AbstractThe transcriptional coregulator OCA-B promotes expression of T cell target genes in cases of repeated antigen exposure, a necessary feature of autoimmunity. We hypothesized that T cell-specific OCA-B deletion and pharmacologic OCA-B inhibition would protect mice from autoimmune diabetes. We developed an Ocab conditional allele and backcrossed it onto a diabetes-prone NOD/ShiLtJ strain background. T cell-specific OCA-B loss protected mice from spontaneous disease. Protection was associated with large reductions in islet CD8+ T cell receptor specificities associated with diabetes pathogenesis. CD4+ clones associated with diabetes were present, but associated with anergic phenotypes. The protective effect of OCA-B loss was recapitulated using autoantigen-specific NY8.3 mice, but diminished in monoclonal models specific to artificial or neoantigens. Rationally-designed membrane-penetrating OCA-B peptide inhibitors normalized glucose levels, and reduced T cell infiltration and proinflammatory cytokine expression in newly-diabetic NOD mice. Together, the results indicate that OCA-B is a potent autoimmune regulator and a promising target for pharmacologic inhibition.~40-word summary statement for the online JEM table of contents and alertsKim and colleagues show that OCA-B in T cells is essential for the generation of type-1 diabetes. OCA-B loss leaves the pancreatic lymph nodes largely undisturbed, but associates autoreactive CD4+ T cells in the pancreas with anergy while deleting potentially autoreactive CD8+ T cells.SummaryKim et al. show that loss or inhibition of OCA-B in T cells protects mice from type-1 diabetes.


Sign in / Sign up

Export Citation Format

Share Document