Feasibility Study for the Identification of FTire Model Parameters Using FE Simulations

2017 ◽  
Vol 45 (3) ◽  
pp. 200-226 ◽  
Author(s):  
Zheng Zhou ◽  
Wang Guolin ◽  
Liang Chen ◽  
Yang Jian ◽  
Li Kaiqiang

ABSTRACT Normally, FTire model parameters are determined by experimental tests. However, because of the high cost of experiment equipment and limitations in rig design and operating conditions, it is hard to obtain all the required data by experimental tests, especially for some large tires, such as the running wheel tires of straddle-type monorail vehicles. To solve this problem, a method based on finite element (FE) simulations is put forward. To achieve the goal, a three-dimensional FE model of a 345/85R16 radial tire is developed using ABAQUS software. In addition, a modified exponential decay friction model, derived from tire tread rubber friction tests, is put forward and applied in the following FE simulations using the ABAQUS user subroutine FRIC. To verify the accuracy of the present model, tire vertical stiffness test, lateral stiffness test, and tire contour geometry measurement are designed. Through the comparison of measurements and FE simulations, it turns out that the model is capable of predicting tire properties accurately. Tire static, steady-state, modal, and dynamic cleat tests are modeled. Finally, data such as vertical stiffness, cornering stiffness, and natural frequencies are derived from FE simulations. Based on the data derived from FE simulations, the FTire model parameters are identified and then validated by comparing the force responses of the FTire simulation in the ADAMS/Tire test rig and FE simulations. The results show that there is an acceptable agreement between them, reflecting that the method is feasible.

Metals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 632 ◽  
Author(s):  
Ahmed M. Sayed

The perforated steel sheets have many uses, so they should be studied under the influence of the uniaxial tensile load. The presence of these holes in the steel sheets certainly affects the mechanical properties. This paper aims at studying the behavior of the stress-strain engineering relationships of the perforated steel sheets. To achieve this, the three-dimensional finite element (FE) model is mainly designed to investigate the effect of this condition. Experimental tests were carried out on solid specimens to be used in the test of model accuracy of the FE simulation. Simulation testing shows that the FE modeling revealed the ability to calculate the stress-strain engineering relationships of perforated steel sheets. It can be concluded that the effect of a perforated rhombus shape is greater than the others, and perforated square shape has no effect on the stress-strain engineering relationships. The efficiency of the perforated staggered or linearly distribution shapes with the actual net area on the applied loads has the opposite effect, as it reduces the load capacity for all types of perforated shapes. Despite the decrease in load capacity, it improves the properties of the steel sheets.


Author(s):  
Keith M. Boyer ◽  
Walter F. O’Brien

A streamline curvature method with improvements to key loss models is applied to a two-stage, low aspect ratio, transonic fan with design tip relative Mach number of approximately 1.65. Central to the improvements is the incorporation of a physics-based shock model. The attempt here is to capture the effects of key flow phenomena relative to the off-design performance of the fan. A quantitative analysis regarding solution sensitivities to model parameters that influence the key phenomena over a wide range of operating conditions is presented. Predictions are compared to performance determined from overall and interstage measurements, as well as from a three-dimensional, steady, Reynolds-averaged Navier-Stokes method applied across the first rotor. Overall and spanwise comparisons demonstrate that the improved model gives reasonable performance trending and generally accurate results. The method can be used to provide boundary conditions to higher-order solvers, or implemented within novel approaches using the streamline curvature method to explore complex engine-inlet integration issues, such as time-variant distortion.


Author(s):  
Jose´ Renato M. de Sousa ◽  
Paula F. Viero ◽  
Carlos Magluta ◽  
Ney Roitman

This paper deals with a nonlinear three-dimensional finite element (FE) model capable of predicting the mechanical response of flexible pipes subjected to axisymmetric loads focusing on their axial compression response. Moreover, in order to validate this model, experimental tests carried out at COPPE/UFRJ are also described. In these tests, a typical 4″ flexible pipe was subjected to axial compression until its failure is reached. Radial and axial displacements were measured and compared to the model predictions. The good agreement between all obtained results points that the proposed FE model is efficient to estimate the response of flexible pipes to axial compression and, furthermore, has potential to be employed in the identification of the failure modes related to excessive axial compression as well as in the mechanical analysis of flexible pipes under other types of loads.


Vehicles ◽  
2021 ◽  
Vol 3 (2) ◽  
pp. 197-211
Author(s):  
Ludwig Herzog ◽  
Klaus Augsburg

The most important change in the transition from partial to high automation is that the vehicle can drive autonomously, without active human involvement. This fact increases the current requirements regarding ride comfort and dictates new challenges for automotive shock absorbers. There exist two common types of automotive shock absorbers with two friction types. The intended viscous friction dissipates the chassis’ vibrations, while the unwanted solid body friction is generated by the rubbing of the damper’s seals and guides during actuation. The latter so-called static friction impairs ride comfort and demands appropriate friction modeling for the control of adaptive or active suspension systems. In the current article, the simulation approach introduced in part 1 of this study is validated against a single friction point and full damper friction measurements. To achieve that, a friction measurement method with novel test rigs has been developed, which allows for reliable determination of the friction behavior of each single friction point, while appropriately resembling the operating conditions of the real damper. The subsequent presentation of a friction simulation using friction model parameters from different geometry shows the general applicability of the overall friction investigation methodology. Accordingly, the presented simulation and measurement approaches enable the investigation of dynamic friction in automotive shock absorbers with significantly increased development efficiency.


Author(s):  
Marzieh Azarnoosh ◽  
Marcus Stoffel ◽  
Dieter Weichert

Over the last several decades investigations of replacement material for intervertebral disc (IVD) have been an important topic in medical research. The challenge is to create materials whose mechanical behavior ideally matches that of the articular cartilage comprising the native discs. Thus, the study of articular cartilages underlying mechanical characteristics is a key issue for the successful development and refinement of replacement materials. Using both experimental and cartilage histostructural data, including fiber orientation, a visco-hyperelastic-diffusion (VHD) material model is developed and implemented. This allows us to numerically study the mechanical behavior of an IVD consisting of a cartilaginous ring surrounding a fluid core. In this work, a three dimensional finite element (FE) model is developed to simulate the behavior of an IVD under various loading conditions. Finally, model parameters are iteratively determined by comparing the simulation results to compression tests on corresponding discs performed in a MTS machine with a tempered nutrient solution.


Author(s):  
Islam M. Soliman ◽  
Michael J. Tait ◽  
Ashraf A. El Damatty

Implementation of supplemental damping systems (e.g., the dynamic vibration absorbers (DVAs)) to mitigate excessive tall building vibrations induced by external dynamic loads (wind storms or earthquakes) has increased over the last several decades. A tuned liquid damper (TLD) is a specific type of the DVAs that consists of a rigid tank which is partially filled with a liquid, usually water. The sloshing liquid inside the tank provides inertia forces that counteract the forces acting on the structure, thus reducing the building motion. A single sway mode of vibration is usually targeted, however, for certain structures multiple modes may need to be suppressed. Moreover, the location of the TLD on the floor plate is important for certain modes, such as a torsionally dominate mode. In this paper, a three-dimensional (3D) finite element (FE) structure-TLD system model (3D-structure-TLD) is proposed where the TLDs can be positioned at any location on the structure allowing the most effective positions in reducing the structure's dynamic response to be determined. Therefore, the response of a 3D structure (tower, high-rise building, bridge, etc.) fitted with single or multiple TLD(s) and subjected to dynamic excitation can be predicted using the proposed FE model. For torsionally sensitive structure (eccentric/irregular structures), this type of 3D numerical analysis is highly recommended. Two nonlinear TLD models are employed to simulate the TLD and implemented in the FE model. The 3D-structure-TLD system model is validated for the cases of sinusoidal and random excitation forces using existing experimental test values. Results from the 3D-structure-TLD system model are found to be in excellent agreement with values obtained from experimental tests.


Author(s):  
Hisham Kamel ◽  
Omar Harraz ◽  
Khaled Azab ◽  
Tamer Attia

Abstract This paper presents the results of an investigative study on the development of an affordable and functional prosthetic foot for below knee amputees. A prototype was successfully manufactured using three-dimensional (3D) printing technology. This continuously evolving technology enables the rapid production of prosthetics that are individually customized for each patient. Our prototype was developed after conducting a topology optimization study that interestingly converged to the shape of the biological human foot. Afterward, a design was envisioned where a simple energy storage and release (ESAR) mechanism was implemented to replace the Achilles tendon, which minimizes the metabolic energy cost of walking. Our mechanism can successfully manage 70% of the energy compared to a normal person during each walking step. A finite element (FE) model of the prosthetic was developed and validated using experimental tests. Then, this FE model was used to confirm the safe operation of the prosthetic through simulating different loading scenarios according to the ISO standard. A prototype was successfully tested by a healthy person using an adapter that was designed and 3D printed for this purpose. Our study clearly showed that customizable prosthetics could be produced at a fraction 1/60 of the cost of the commercially sold ones.


2011 ◽  
Vol 48 (4) ◽  
pp. 557-567 ◽  
Author(s):  
Wan-Huan Zhou ◽  
Jian-Hua Yin ◽  
Cheng-Yu Hong

In this paper, a three-dimensional (3D) finite element (FE) model is developed to simulate the pullout behaviour of a soil nail in a soil-nail pullout box under different overburden and grouting pressures. The FE model simulates all the procedures of a pullout test on a grouted soil nail in a compacted and saturated completely decomposed granite (CDG) soil. The stress–strain behaviour of the CDG soil is described by a modified Drucker–Prager/Cap model, while that of the soil–nail interface is represented by the Coulomb friction model. Triaxial experiment data are used to calibrate the soil parameters in the soil constitutive model. The interface parameters are determined from back-analysis with the laboratory soil-nail pullout data. The soil stress variations surrounding the soil nail during drilling, grouting, saturation, and pullout are all well simulated by the FE modelling and compared with available test data. The comparisons between the modelling and experimental data have shown that the established FE can well simulate the pullout behaviour of a soil nail in a soil mass. Based on this, the verified FE model has the potential to simulate the performance of a soil nail in a field soil slope.


2015 ◽  
Vol 137 (4) ◽  
Author(s):  
H. Tavoosi ◽  
S. Ziaei-Rad ◽  
F. Karimzadeh ◽  
S. Akbarzadeh

In this paper, the wear of nanostructured NiAl coating was studied both experimentally and numerically. First, the nanocrystalline NiAl intermetallic powder was synthesized by mechanical alloying (MA) of aluminum and Ni powders. The coatings were deposited onto the low carbon steel substrate using high velocity oxy-fuel (HVOF) technique. Nanoindentation test was conducted to find out the mechanical properties of the coating. The dry wear tests were then performed using a pin-on-block test rig under different operating conditions. Finally, finite element (FE) method was employed to model the wear characteristics of the prepared nanostructured material. A three-dimensional (3D) FE model was created and used to simulate the pin-on-block experiments. The results show that the volume losses predicted by the numerical analysis are in good agreement with the experimental data.


Author(s):  
José Renato M. de Sousa ◽  
Marcelo K. Protasio ◽  
Luis V. S. Sagrilo

The hydrostatic collapse strength of a flexible pipe is largely dependent on the ability of its carcass and pressure armor to resist radial loading and, therefore, its prediction involves an adequate modeling of these layers. Hence, initially, this work proposes a set of equations to estimate equivalent thicknesses and physical properties for these layers, which allows their modeling as equivalent orthotropic cylinders. These equations are obtained by simulating several two-point static ring tests with a three-dimensional finite element (FE) model based on beam elements and using these results to form datasets that are analyzed with a symbolic regression (SR) tool. The results of these analyses are the closed-form equations that best fit the provided datasets. After that, these equations are used in conjunction with a three-dimensional shell FE model and a previously presented analytical model to study the dry and wet hydrostatic collapse mechanisms of a flexible pipe. The predictions of these models agreed quite well with the collapse pressures obtained in experimental tests thus indicating that the use of the equivalent approach is promising.


Sign in / Sign up

Export Citation Format

Share Document