scholarly journals On the promising areas for the development of tools and methods of improving the seismic safety of the territory of Dagestan

Author(s):  
Д.Г. Таймазов ◽  
С.А. Мамаев ◽  
А.С. Мамаев

Обсуждаются перспективы использования новых аппаратурно-методических разработок Института геологии ДФИЦ РАН для повышения сейсмической безопасности территории Дагестана. По предварительным расчетам разработанная на их базе деформационная станция траншейного типа (ДСТТ) в десятки раз дешевле и эффективнее, чем известная подземная деформационная станция штольневого типа, что делает реальным создание в сейсмоопасных районах сети ДСТТ и существенно расширит круг контролируемых параметров земной коры. В число этих параметров войдут локальные объемные деформации вмещающей среды, локальные линейные деформации в трех ортогональных координатах, величина и направление максимальных сдвиговых деформаций, азимут простирания и угол падения плоскости максимальных сдвиговых деформаций, деформация кручения относительно вертикальной оси, сейсмодеформации по трем координатам в широком частотном и динамическом диапазоне, локальные наклоны по двум ортогональным азимутам, сейсмоакселерограммы по трем ортогональным координатам в динамическом диапазоне 100 децибел, среднемасштабные (100 м) линейные деформации по трем ортогональным координатам, градиенты среднемасштабных линейных деформаций, среднемасштабные наклоны земной коры в двух ортогональных азимутах, крупномасштабные горизонтальные движения земной коры, вертикальные движения земной коры неприливные изменения силы тяжести и ее производных, обусловленные тектоническими причинами, амплитуды и фазы приливных гармоник во временных изменениях деформаций, наклонов, силы тяжести и ее градиентов. Становится возможным регулярное разномасштабное картирование всех перечисленных параметров, что означает качественно новый уровень деформационного мониторинга земной коры. Показана целесообразность использования комплекса для организации сейсмопрогностических наблюдений на территории Дагестана. К другим областям возможного применения разработок относятся геологоразведка, прецизионные гравитационные эксперименты, деформационный мониторинг крупных инженерных сооружений, прецизионные станки и системы позиционирования, что придает их реализации дополнительную актуальность. Описанный комплексный мониторинг предложено дополнить режимным просвечиванием сейсмоактивных зон Восточного Кавказа с использованием тяжелых вибросейсмоисточников и сейсмическим микрорайонированием крупных населенных пунктов в соответствие с существующими нормами и правилами. The prospects of using new hardware and methodological developments of the Institute of Geology of the Dagestan Federal Research Center of RAS to improve the seismic safety of the territory of Dagestan are discussed. According to the preliminary calculations, the trench-type deformation station (TTDS) developed on their basis is ten times cheaper and more efficient than the well-known underground deformation tunnel-type station, which makes it possible to create a TTDS network in seismically hazardous areas and which expand significantly the range of controlled parameters of the earths crust. These parameters will include local volumetric deformations of the host medium, local linear deformations in three orthogonal coordinates, the magnitude and direction of maximum shear deformations, the strike azimuth and the angle of incidence of the plane of maximum shear deformations, torsional deformation relative to the vertical axis, seismic deformation along three coordinates in a wide frequency and dynamic range, local slopes along two orthogonal azimuths, seismic accelerograms along three orthogonal coordinates in dynamic range 100 decibels medium-scale (100 m) linear deformations along three orthogonal coordinates, gradients of medium-scale linear deformations, medium-scale crustal tilts in two orthogonal azimuths, large-scale horizontal earths crust movement, vertical movement of the earths crust non-tidal changes in gravity and its derivatives caused by the tectonic reasons, the amplitudes and phases of tidal harmonics in temporal variations of deformations, inclinations, gravity and its gradients. It becomes possible a regular multi-scale mapping of all these parameters, which means a qualitatively new level of deformation monitoring of the earths crust. The expediency of using the complex for the organization of seismic-prediction observations in the territory of Dagestan is shown. Other areas of potential development applications include geological exploration, precision gravity experiments, strain monitoring of large engineering structures, precision machines and positioning systems, which gives their implementation additional relevance. It is proposed to supplement the described complex monitoring with regime transmission of seismically active zones of the East Caucasus using heavy vibro-seismic sources and seismic microzonation of large settlements following the existing norms and rules

2021 ◽  
Vol 13 (15) ◽  
pp. 3044
Author(s):  
Mingjie Liao ◽  
Rui Zhang ◽  
Jichao Lv ◽  
Bin Yu ◽  
Jiatai Pang ◽  
...  

In recent years, many cities in the Chinese loess plateau (especially in Shanxi province) have encountered ground subsidence problems due to the construction of underground projects and the exploitation of underground resources. With the completion of the world’s largest geotechnical project, called “mountain excavation and city construction,” in a collapsible loess area, the Yan’an city also appeared to have uneven ground subsidence. To obtain the spatial distribution characteristics and the time-series evolution trend of the subsidence, we selected Yan’an New District (YAND) as the specific study area and presented an improved time-series InSAR (TS-InSAR) method for experimental research. Based on 89 Sentinel-1A images collected between December 2017 to December 2020, we conducted comprehensive research and analysis on the spatial and temporal evolution of surface subsidence in YAND. The monitoring results showed that the YAND is relatively stable in general, with deformation rates mainly in the range of −10 to 10 mm/yr. However, three significant subsidence funnels existed in the fill area, with a maximum subsidence rate of 100 mm/yr. From 2017 to 2020, the subsidence funnels enlarged, and their subsidence rates accelerated. Further analysis proved that the main factors induced the severe ground subsidence in the study area, including the compressibility and collapsibility of loess, rapid urban construction, geological environment change, traffic circulation load, and dynamic change of groundwater. The experimental results indicated that the improved TS-InSAR method is adaptive to monitoring uneven subsidence of deep loess area. Moreover, related data and information would provide reference to the large-scale ground deformation monitoring and in similar loess areas.


2021 ◽  
Vol 10 (3) ◽  
pp. 119
Author(s):  
Hakan A. Nefeslioglu ◽  
Beste Tavus ◽  
Melahat Er ◽  
Gamze Ertugrul ◽  
Aybuke Ozdemir ◽  
...  

Suitable route determination for linear engineering structures is a fundamental problem in engineering geology. Rapid evaluation of alternative routes is essential, and novel approaches are indispensable. This study aims to integrate various InSAR (Interferometric Synthetic Aperture Radar) techniques for sinkhole susceptibility mapping in the Kirikkale-Delice Region of Turkey, in which sinkhole formations have been observed in evaporitic units and a high-speed train railway route has been planned. Nine months (2019–2020) of ground deformations were determined using data from the European Space Agency’s (ESA) Sentinel-1A/1B satellites. A sinkhole inventory was prepared manually using satellite optical imagery and employed in an ANN (Artificial Neural Network) model with topographic conditioning factors derived from InSAR digital elevation models (DEMs) and morphological lineaments. The results indicate that high deformation areas on the vertical displacement map and sinkhole-prone areas on the sinkhole susceptibility map (SSM) almost coincide. InSAR techniques are useful for long-term deformation monitoring and can be successfully associated in sinkhole susceptibility mapping using an ANN. Continuous monitoring is recommended for existing sinkholes and highly susceptible areas, and SSMs should be updated with new results. Up-to-date SSMs are crucial for the route selection, planning, and construction of important transportation elements, as well as settlement site selection, in such regions.


2021 ◽  
Author(s):  
Hang Xu ◽  
FuLong Chen

<p>Architectural heritage is cultural and spiritual symbol of our predecessors with immeasurable historical, artistic, and technological value. However, these heritages are exposed to long-term degradation due to the combination impacts from the natural erosion and anthropogenic activities. Consequently, it is important to establish an effective deformation monitoring system to support the sustainable conservation of those properties. In order to make complementary to conventional geodetic measurements such as global navigation satellite systems (GNSS) and leveling in terms of spatial density, we propose a landscape-ontology scale multi-temporal InSAR (MTInSAR) solution for the preventive deformation monitoring of large-scale architectural heritage sites through the adaption of current MTInSAR approaches. We apply different solutions in Shanhaiguan section of the Great Wall in China and the Angkor Wat in Cambodia based on their onsite characteristics. At the cultural landscape scale, we improve the small baseline subset (SBAS) approach by the induced pseudo-baseline strategy in order to avoid the errors caused by inaccurate external DEM, resulting in a robust deformation estimation in mountainous areas where the architecture heritage of the Great Wall located; at the ontology scale, we integrate the differential SAR tomography (DTomoSAR) with the finite element method (FEM) for the structural instability detection of the Angkor Wat Temple, pinpointing the structural defects from the 3D deformation measurements and simulation. This study demonstrates the capability of adaptive MTInSAR approaches for the preventive monitoring the deformation of large-scale architectural heritage sites.</p><p><strong>Keywords</strong>: Architectural heritage; two-scale; deformation; MTInSAR</p>


2013 ◽  
Vol 19 (2) ◽  
pp. 268-286 ◽  
Author(s):  
Kutalmis Gumus ◽  
Halil Erkaya ◽  
Metin Soycan

Applicability of Terrestrial Laser Scanners/Scanning (TLS) in deformation measurement in dams is an active area of study. With the advance of modern technology, accuracy of measurements is much improved by developments in design of terrestrial laser scanners. Currently, this technology is used in large and complex engineering structures such as dams. Although TLS is a high cost technology, it is particularly used in monitoring of dam deformations, due to its speed in obtaining thousands of data points, ability to visualize the scanned object and its environment with high accuracy and ability to take long-range measurements. In order to determine the effect of change in water reservoir levels on body of the dam, TLS are used to take deformation measurements in different time intervals, where the water level was at maximum, minimum and medium levels. This paper provides an overview of terrestrial laser scanning technology for deformation monitoring. The concrete arch dam in Antalya Oymapinar, Turkey was used for case study. Four different scannings were performed in this dam in order to verify the replicability of TLS results on same water levels and equivalent conditions. Digital Surface Models reflecting dam surface have been created. Results obtained from surface model differences were examined using surface matching method.


2015 ◽  
Vol 5 (2) ◽  
pp. 87-93
Author(s):  
M. Tudorică ◽  
C. Bob

Abstract An issue more and more important in construction science represents the rehabilitation of structures placed on difficult soils. This paper presents the behaviour analysis of an existing structure and summarizes several consolidation solutions at both levels of a severely damaged construction placed on a shrinking and swelling soil, located in Arad County - Romania, situated on 55 Revolutiei Avenue. These types of soils are known in specialty literature as shrinking fields, expansive or active soils, having the property to modify sensitively their entire volume when there are variations of moisture, being spread on a large scale in Romania. After the assessment of seismic safety for a section of the damaged structure, which is characterized by a high risk of collapse from seismic action, reason for which it has been proposed to immediate by consolidate the damaged construction.


Jurnal AKTUAL ◽  
2019 ◽  
Vol 16 (1) ◽  
pp. 47
Author(s):  
Aisah Aisah

Rice Milling Company is rice industry’s oldest and largest classified in Indonesia, which is able to absorb more than 10 million workers, handles more than 40 million tons of grain.  Rice Milling Company agro-industy is the central point, because this is where the main product is obtained in the form of rice and raw materials for advanced processing of food and industrial products.  Rice Miling Unit in the district of OKU Timur there is some skala, ranging form small-scale, medium-scale to large-scale.  Fuctional benefits of each different scale milling is also different.  The average rice farmers often sell gabahnya to the rice milling unit closest to the place residence, whether it is large-scale, medium and small.  Rice produced by the milling-grinding different quality.  Usually when a large-scale millimg yield of rice is cleaner than the other scale.  But it does not become a reference for milling grain milling usually depends on consumer demand.  The purpose of the study are : 1.  To determine levels of volume (tonnage) and the retention time of each service fuctional rice storage (barns) wich carried a different scale rice milling unit.  2.  To determine differences in the bebefits of economic transactions received by farmers and rice millers of different scale of business, especially when seen from the level of the milling costs, the purchase price of rice by rice milling unit, and the quality of milling services and service scale.  The result show that : the fuctional role of each is different milling.  Large-scale milling has three fuctional roles are : Processing, storage and distribution.  Medium-scale miling functional has two roles, namely : processing and distribution.  While small-scale rice milling unit has only two functional roles are : processing and storage.


2020 ◽  
Vol 11 (2) ◽  
pp. 17-24
Author(s):  
D. N. Vlasov ◽  
◽  
D. N. Zamaskin ◽  
O. O. Kaminsky ◽  
A. V. Kamorny ◽  
...  

The article discusses one of today’s challenges, namely, the decommissioning of nuclear power facilities. It summarizes the experience in the decommissioning of radioactive waste storage facilities belonging to RosRAO’s Murmansk department branch of the Northwest Territorial District providing detailed overview of pre-decommissioning activities, as well as the decommissioning operations themselves, relevant technology and technical equipment applied. Pre-decommissioning stage involved large-scale efforts (2011—2015) on accumulated RW identifi cation and its inventory taking, as well as a comprehensive engineering radiation survey. Decommissioning projects have been developed and approved, a state environmental examination has been carried out with a Sanitary and Epidemiological Statement on compliance with state sanitary and epidemiological rules and regulations issued by FMBA of Russia. The paper presents the practice of constructing some engineering structures to provide additional safety and security of RW storage facilities during their dismantlement. Particular attention was paid to the problems associated with the use of special equipment.


2009 ◽  
Vol 62-64 ◽  
pp. 31-38
Author(s):  
J.O. Ehiorobo

In recent years, the need to monitor for Deformation in Engineering Structures such as Dams, Bridges and Tall buildings have become more necessary as a result of reported failures of many of these structures with catastrophic consequences globally. Global Positioning System (GPS) is highly automated and less labour intensive than other conventional techniques used in structural deformation monitoring. For most applications, such as National Geodetic Control Network, Urban Control Network and other Engineering Control Network, an accuracy in the cm level for most GPS work is quite adequate. For Structural deformation monitoring however, the required accuracy is in millimeters. In this paper, the use of Static Differential GPS method with multiple receivers for high precision measurement was investigated using the monitoring Stations at Ikpoba Dam as case study Scenerio. Four units of LEICA 300 Dual Frequency GPS receivers were deployed for code and carrier phase measurements with observation session of 1hr at a sampling rate of 15 sec. Baseline Processing and Least Squares Adjustment of observation was carried out in WGS 84 and NTM reference frames using the LEICA SKI-PRO Processing software and Move. Analysis of the results revealed that the number of outliers in the observation were <5% and the accuracy of horizontal and vertical coordinates were 4mm maximum for horizontal and 2mm maximum for vertical. The study revealed that in areas with favourable satellite constellation and appropriate reduction or elimination of multipath and other noise like errors, Static Differential GPS techniques with a combination of code and carrier phase measurement gives good results for structural deformation monitoring.


2018 ◽  
Vol 23 (1) ◽  
pp. 89-101
Author(s):  
Tongjun Chen ◽  
Guodong Ma ◽  
Xin Wang ◽  
Ruofei Cui

The presence of tectonic deformed coal (TDC) is a prerequisite for coal-and-gas outburst. With a higher degree of TDC deformation, there is a greater possibility of coal-and-gas outbursts. The estimate of deformation degree for coal seam is critically important for mining safety. In this study, we focus on the No. 8 coal seam of Luling coalmine to identify and estimate its deformation degree using well logs, multiscale wavelet analysis, cluster analysis, and ternary diagrams. Since the original well logs contain noise, we first perform denoising with multi-scale wavelet analysis and produce their large-scale and medium-scale output components. Then, we classify the No. 8 coal seam into different sub lithological seams with cluster analysis using the large-scale and medium-scale components as inputs. The classified sub lithological seams include the undeformed coal, the cataclastic coal, the granulated coal, the mylonitized coal, and the gangue. Finally, we group the study area into four regions based on degree of deformation with ternary diagrams using classified sub seam thickness as input. The regions with III and IV deformation degrees are mostly composed of highly deformed TDCs and are prone to coal-and-gas outburst. [Figure: see text]


Sign in / Sign up

Export Citation Format

Share Document