scholarly journals Preliminary Archaeopetrological Study of the Lithic Industry From the l’Hort de la Boquera Rock Shelter (Margalef de Montsant, Tarragona, Spain): Applying Mineralogical and Geochemical Techniques

2018 ◽  
Vol 56 ◽  
pp. 23-33
Author(s):  
Mar Rey-Solé ◽  
Maria Pilar García-Argüelles ◽  
Jordi Nadal ◽  
Xavier Mangado ◽  
Anders Scherstén ◽  
...  

The l’Hort de la Boquera site is located in the northeastern part of Iberia and its stone tool assemblage includes up to 25,000 flint artefacts. This is the first approach to the analysis of the raw material through an archaeopetrological study. Results were obtained by use of mineralogi¬cal techniques: macroscopic and petrographic analysis, Scanning Electronic Microscopy (SEM), Micro-Raman and X-Ray diffraction (XRD); additionally, Laser Ablation Inductively Coupled Plasma Mass Spectrometry was applied. It has been possible to discriminate at least four flint categories, the ‘Evaporitic flint type’ (with two local subvarieties – ‘Common evaporitic’ and ‘Garnet’ varieties) that comes from local outcrops of the Ulldemolins Complex, and two flint types that had their origin further afield: the ‘Charophyta flint type’ (coming from the Torrente de Cinca Unit) and the ‘Dark flint type’ (from the La Serra Llarga Formation).These results make this study the most comprehensive analysis of raw materials that has been carried out in the area so far

2012 ◽  
Vol 9 (4) ◽  
pp. 1788-1795 ◽  
Author(s):  
Olushola S. Ayanda ◽  
Olalekan S. Fatoki ◽  
Folahan A. Adekola ◽  
Bhekumusa J. Ximba

In this study, fly ash was obtained from Matla power station and the physicochemical properties investigated. The fly ash was characterized by x-ray fluorescence, x-ray diffraction, scanning electron microscopy, and inductively coupled plasma mass spectrometry. Surface area, particle size, ash and carbon contents, pH, and point of zero charge were also measured. The results showed that the fly ash is alkaline and consists mainly of mullite (Al6Si2O13) and quartz (SiO2). Highly toxic metals As, Sb, Cd, Cr, and Pb as well as metals that are essential to health in trace amounts were also present. The storage and disposal of coal fly ash can thus lead to the release of leached metals into soils, surface and ground waters, find way into the ecological systems and then cause harmful effect to man and its environments.


Author(s):  
Zagarzusem Ts ◽  
Baasanjav D ◽  
Sugir-Erdene N ◽  
Orgilbayar B ◽  
Sukhbat S ◽  
...  

This study investigated the effectiveness of the gravity beneficiation method based on gravitation and centrifugal forces for manganese ore. Manganese ores from Unagad deposit, samples powders were analyzed for their element and mineralogical composition using inductively coupled plasma mass spectrometry (ICP-MS) and X-ray diffractometer (XRD). Mineralogy and petrographic analysis are presented the mineralogical compositions are hydro goethite, manganese minerals and magnetite, the gangue minerals are quartz, albite, orthoclase, microcline in manganese ore. Manganese mineral occurs white, improper shape particles, weak grained-aggregates associated in gangue minerals. The most important minerals consist of manganese minerals are hausmannite, pyrolusite, rhodochrosite, and manganosite. The composite of feed containing 17.31 % Mn and 36.3 % SiO2 was produced by a centrifugal concentrator in combination with the shaking table. In the experiment, a concentrate assaying 41.37% Mn was obtained from this composite with 11.9 % yields. In the next experiment, f80=0.074mm particle size feed ore was used in the MGS concentration test. A concentrate containing 38.33 % Mn with 26.57 % yields was produced in this experiment. The results showed that it is possible to obtain concentrate on the gravity processing of manganese ore that economically significant and meet standard requirements. Манганы хүдрийг гравитацийн аргаар баяжуулах технологийн судалгаа Хураангуй:  Энэхүү судалгааны ажлаар манганы хүдрийг хүндийн хүч болон төвөөс зугтах хүчний үйлчлэл дээр үндэслэн гравитацийн аргаар баяжуулах туршилт явуулав. Унагад ордын манганы хүдрийн дээжийн элементийн найрлагыг индукцийн холбоост плазмын масс спектрометр (ICP-MS), эрдсийн найрлагыг рентген дифрактометрийн аргаар тодорхойлсон. Минералоги, петрографийн шинжилгээгээр чулуулагт гидрогётит, манганы эрдсүүд, магнетит гэсэн хүдрийн эрдсүүд, кварц, альбит, ортоклаз, микроклин зэрэг хүдрийн бус эрдсүүд тодорхойлогдлоо. Хүдрийн бус эрдэс дотор манганы эрдэс нь цагаан өнгөтэй, зөв бус хэлбэртэй мөхлөгүүд мөн сул шигтгээлэг байдлаар тааралдаж байна. Манганы эрдсүүд нь гаусманит, пиролюзит, родохрозит, манганизит хэлбэрээр агуулагдсан байна. Манганы 17.31%, цахиурын ислийн 36.3% агуулгатай анхдагч хүдрийг төвөөс зугтах хүчний сепаратор болон ширээний хосолсон аргаар баяжуулахад баяжмалын агуулга Mn-41.37%, гарц 11.9% байв. Харин -0.074 мм фракцийн агуулга 80%-тай анхдагч хүдрийг хүндийн хүчний сепаратор (MGS)–аар баяжуулж, 38.33% -ийн манган агуулсан, 26.57% -ийн гарцтай баяжмал гарган авсан. Иймд манганы хүдрийг гравитацийн аргаар баяжуулахад стандартын шаардлага хангасан эдийн засгийн ач холбогдолтой бүтээгдэхүүн гарган авах боломжтойг тогтоов. Түлхүүр үг: Манганы хүдэр, хүндийн хүчний сепаратор, төвөөс зугтах хүчний сепаратор, рентген - дифрактометр.


2016 ◽  
Vol 3 (2) ◽  
Author(s):  
María Soto

The Picamoixons site is a rockshelter located in the province of Tarragona (NE Iberian Peninsula). It was object of two rescue campaigns during 1988 and 1993, which led to the recovery of a complete archaeological assemblage, including stone tools as well as faunal and portable art remains that date the occupation to the 14th to 11th millennium BP (calibrated). This study involves a petrographic characterisation of the stone-tool assemblage in order to establish: 1) the procurement areas, 2) the raw materials management strategies and 3) the mobility radius and territorial sizes of the hunter-gatherers groups that occupied the site. The method applied comprises in a multiscale analysis that includes systematic prospection, the petrographic characterisation of geological and archaeological samples, an analysis of the chert types represented in the knapping sequence, and the definition of the mobility axes and areas frequented according to lithic procurement.A petrographic analysis of the chert in the prospected area led to the definition of nine macroscopic varieties related to five types (Vilaplana, Morera, Maset, Vilella and Tossa cherts), related to Lower and Upper Muschelkalk (Triassic), Lutetian, Bartonian (Palaeocene) and Sannonian (Oligocene) deposits.The study of the knapping sequences indicates the main exploitation of Bartonian cherts (Tossa type), and the use of Lutetian cherts (Maset and Morera types) for configuring retouched tools. The exploitation of the remaining raw material types identified is considered sporadic and opportunistic.Defining the procurement areas enabled the mobility radius to be assessed as between 3 and 30 km, highlighting the importance of the fluvial basins as natural movement pathways. The results indicate that the main procurement territory was 16 km2 in area, associable with a forager radius. The most remote procurement distances suggest a maximum exploitation area of 260 km2, defining an intra-regional range. This range presents parallelisms with various contemporaneous hunter-gatherers groups in Western Europe, suggesting a progressive mobility reduction dynamic during the Late Pleistocene-Initial Holocene.


Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 402 ◽  
Author(s):  
Qin ◽  
Cao ◽  
Wei ◽  
Wang ◽  
Liu

This paper reports the mineral compositions and geochemical characteristics of the No. 5-2 high-sulfur coal (Taiyuan Formation) from Dongpo Mine, Weibei Coalfield, Shaanxi, Northern China via transmitted and reflected light microscopy, scanning electron microscope equipped with an energy-dispersive X-ray spectrometer (SEM-EDS), X-ray diffraction (XRD), inductively coupled plasma mass spectrometry (ICP-MS), and X-ray fluorescence spectrometry (XRF). We also confirmed the input of intermediate-felsic volcanic ashes into the Taiyuan Formation coals in Dongpo Mine, Weibei Coalfield. The results show that Dongpo coals are enriched in Ga and Li compared to the average values for world hard coals, and they are depleted in Al2O3 compared to Chinese coals. The coal low temperature ash contains kaolinite, illite, quartz, calcite, pyrite, and to a lesser extent, chlorite, plagioclase, dolomite, ankerite, and apatite. The concentration anomalies of Ga and Li in No. 5-2 high-sulfur coal were not caused by the Benxi Formation Bauxite, but by the influence of multiple geological factors. The Middle Proterozoic moyite from the Yinshan Oldland led to the slightly higher Ga and Li contents of the No. 5-2 coal than those in world hard coals. Input of synchronization volcanic ash, injection of hydrothermal fluids during the syngenetic or early diagenetic stages and influence of seawater further contributed to the Ga and Li enrichment of the No. 5-2 coal.


Minerals ◽  
2019 ◽  
Vol 9 (10) ◽  
pp. 635
Author(s):  
Aashvi Dudhaiya ◽  
Fatima Haque ◽  
Hugo Fantucci ◽  
Rafael M. Santos

Wollastonite is a natural silicate mineral that can be used as an agricultural soil amendment. Once in the soil, this mineral undergoes weathering and carbonation reactions, and, under certain soil and field crop conditions, our previous work has shown that this practice leads to accumulation of inorganic carbon (calcium carbonate). Mineral carbonation is the carbon sequestration approach with the greatest potential for sequestration capacity and permanency. Agricultural lands offer vast areas onto which such minerals can be applied, while benefiting crops. This work illustrates a technique to separate wollastonite-containing soils into different fractions. These fractions are characterized separately to determine organic and inorganic content, as well as to determine the chemical and mineral composition. The aim is to detect the fate of wollastonite in agricultural soils, and the fate of weathering/carbonation products in the soil. The soils used in the study were collected from soybean and potato farmlands in Southern Ontario, and from an experimental pilot plot. Soil fractionation was done using sieving, and soil fractions were analyzed by a calcimeter, X-ray diffraction, and loss-on-ignition. Acid digested samples were measured by Inductively Coupled Plasma Mass Spectrometry. Carbonates and wollastonite were enriched by fractionation.


2017 ◽  
Vol 81 (6) ◽  
pp. 1367-1395 ◽  
Author(s):  
Emma Dowman ◽  
Frances Wall ◽  
Peter J. Treloar ◽  
Andrew H. Rankin

AbstractCarbonatites are enriched in critical raw materials such as the rare-earth elements (REE), niobium, fluorspar and phosphate. A better understanding of their fluid regimes will improve our knowledge of how to target and exploit economic deposits. This study shows that multiple fluid phases penetrated the surrounding fenite aureole during carbonatite emplacement at Chilwa Island, Malawi. The first alkaline fluids formed the main fenite assemblage and later microscopic vein networks contain the minerals of potential economic interest such as pyrochlore in high-grade fenite and rare-earth minerals throughout the aureole. Seventeen samples of fenite rock from the metasomatic aureole around the Chilwa Island carbonatite complex were chosen for study. In addition to the main fenite assemblage of feldspar and aegirine ± arfvedsonite, riebeckite and richterite, the fenite contains micro-mineral assemblages including apatite, ilmenite, rutile, magnetite, zircon, rare-earth minerals and pyrochlore in vein networks. Petrography using a scanning electron microscope in energy-dispersive spectroscopy mode showed that the rare-earth minerals (monazite, bastnäsite and parisite) formed later than the fenite feldspar, aegirine and apatite and provide evidence ofREEmobility into all grades of fenite. Fenite apatite has a distinct negative Eu anomaly (determined by laser ablation inductively coupled plasma mass spectrometry) that is rare in carbonatite-associated rocks and interpreted as related to pre-crystallization of plagioclase and co-crystallization with K-feldspar in the fenite. The fenite minerals have consistently higher midREE/lightREEratios (La/Sm ≈ 1.3 monazite, ≈ 1.9 bastnäsite, ≈ 1.2 parisite) than their counterparts in the carbonatites (La/Sm ≈ 2.5 monazite, ≈ 4.2 bastnäsite, ≈ 3.4 parisite). Quartz in the low- and medium-grade fenite hosts fluid inclusions, typically a few micrometres in diameter, secondary and extremely heterogeneous. Single phase, 2- and 3-phase, single solid and multi solid-bearing examples are present, with 2-phase the most abundant. Calcite, nahcolite, burbankite and baryte were found in the inclusions. Decrepitation of inclusions occurred at ∼200°C before homogenization but melting-temperature data indicate that the inclusions contain relatively pure CO2. A minimum salinity of ∼24 wt.% NaCl equivalent was determined. Among the trace elements in whole-rock analyses, enrichment in Ba, Mo, Nb, Pb, Sr, Th and Y and depletion in Co, Hf and V are common to carbonatite and fenite but enrichment in carbonatitic type elements (Ba, Nb, Sr, Th, YandREE) generally increases towards the inner parts of the aureole. A schematic model contains multiple fluid events, related to first and second boiling of the magma, accompanying intrusion of the carbonatites at Chilwa Island, each contributing to the mineralogy and chemistry of the fenite. The presence of distinct rare-earth mineral microassemblages in fenite at some distance from carbonatite could be developed as an exploration indicator ofREEenrichment.


2020 ◽  
Vol 117 (28) ◽  
pp. 16243-16249 ◽  
Author(s):  
Nadine Schibille ◽  
Jorge De Juan Ares ◽  
María Teresa Casal García ◽  
Catherine Guerrot

This study investigates glass finds from the Iberian Peninsula as a proxy for identifying the mechanisms underlying technological transformations and innovation in the wake of the Arab conquest in the seventh and eighth centuries CE. High-resolution laser ablation inductively coupled plasma mass spectrometry data combined with lead isotope analyses of a precisely dated (mid-eighth century to 818 CE) glass assemblage from the Rabad of Šaqunda in Cordoba, capital of Umayyad Spain, enabled us to trace the origins of an Iberian glassmaking industry and to unambiguously link it to the exploitation of local raw materials. The analytical data reveal increased recycling, some isolated imports of Islamic plant ash glasses from Mesopotamia, and, most notably, the development of a new type of glassmaking technology that resorted to the use of lead slag from silver and lead mining and processing in the region around Cordoba. The production of this type of lead glass from Šaqunda was short-lived and was subsequently refined by introducing additional fluxing agents. The technological innovation of Islamic glassmaking in Spain evidently drew inspiration from adjacent high-temperature technologies. The revival of glass and the development of a local glassmaking tradition was indirectly related to the wider processes of Islamization, such as the introduction of glazed ceramics that are compositionally related to the lead glasses from Šaqunda.


Molecules ◽  
2019 ◽  
Vol 24 (15) ◽  
pp. 2695 ◽  
Author(s):  
Mhadmhan ◽  
Marquez-Medina ◽  
Romero ◽  
Reubroycharoen ◽  
Luque

We have successfully incorporated iron species into mesoporous aluminosilicates (AlSBA15) using a simple mechanochemical milling method. The catalysts were characterized by nitrogen physisorption, inductively coupled plasma mass spectrometry (ICP-MS), pyridine (PY) and 2,6-dimethylpyridine (DMPY) pulse chromatography titration, powder X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and scanning electron microscopy with energy-dispersive X-ray spectroscopy (SEM-EDX). The catalysts were tested in the N-alkylation reaction of aniline with benzyl alcohol for imine production. According to the results, the iron sources, acidity of catalyst and reaction conditions were important factors influencing the reaction. The catalyst showed excellent catalytic performance, achieving 97% of aniline conversion and 96% of imine selectivity under optimized conditions.


Materials ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3267
Author(s):  
Gigliola Lusvardi ◽  
Francesca Sgarbi Stabellini ◽  
Roberta Salvatori

(1) Background: valuation of the bioactivity and cytocompatibility of P2O5-free and CeO2 doped glasses. (2) Methods: all glasses are based on the Kokubo (K) composition and prepared by a melting method. Doped glassed, K1.2, K3.6 and K5.3 contain 1.2, 3.6, and 5.3 mol% of CeO2. Bioactivity and cytotoxicity tests were carried out in simulated body fluid (SBF) solution and murine osteocyte (MLO-Y4) cell lines, respectively. Leaching of ions concentration in SBF was determined by inductively coupled plasma mass spectrometry (ICP-MS) and optical emission spectrometry (ICP-OES). The surface of the glasses were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD) techniques. (3) Results: P2O5-free cerium doped glasses are proactive according to European directives. Cerium increases durability and retards, but does not inhibit, (Ca10(PO4)6(OH)2, HA) formation at higher cerium amounts (K3.6 and K5.3); however, cell proliferation increases with the amount of cerium especially evident for K5.3. (4) Conclusions: These results enforce the use of P2O5-free cerium doped bioactive glasses as a new class of biomaterials.


Minerals ◽  
2019 ◽  
Vol 9 (8) ◽  
pp. 467
Author(s):  
Qing He ◽  
Yanfei An ◽  
Fangji Sun ◽  
Chunkit Lai

The occurrence of pyrite concretions in the Permian Longtan Formation sheds light on the paragenesis, formation conditions and regional paleoenvironment. We analyzed the mineral and geochemical characteristics of pyrite concretions using scanning electron microscopy-energy dispersive spectrometer (SEM-EDS), X-ray diffraction (XRD) and laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS) from the Longtan Formation shales in Anhui, Eastern China. These pyrite concretions consist of two types, each with a distinct nucleus and outer layer: The former is mainly made up of quartz, bivalve fragments and minor gypsum, ankerite, siderite and pyrite, the latter consists of pyrite (FeS2) in the voids of quartz. Based on the correlation matrix and geochemical/mineralogical affinity, trace elements in the pyrite concretions fall into three groups, that is, I (Sr, Ba, Rb and K) in calcic minerals from bivalve-bearing nucleus, II (Nb, Ta, Zr and Hf) in certain heavy minerals and III (V, Cr, Co and Ni) in pyrites. Mineral assemblage and paragenetic analysis show that the formation of pyrite concretions can be divided into three stages: (1) deposition of bivalve-bearing nucleus, (2) lithification of diatoms and (3) diagenesis of pyrite. Mineral and geochemical indicators suggest that the formation environment of pyrite concretions has undergone a major shift from lagoon with intense evaporation, to strong reducing marsh.


Sign in / Sign up

Export Citation Format

Share Document