scholarly journals Novel Ribosome-inactivating Protein (RIP) Isolated from Trichosanthes dioica Induces Apoptosis in HeLa Cell Line

2021 ◽  
Vol 12 (3) ◽  
pp. 165-169
Author(s):  
T. Ghosh ◽  
◽  
Y. Vashi ◽  
K. Barman ◽  
L. I. Singha ◽  
...  

Ribosome-inactivating proteins (RIPs) are toxic N-glycosidases that depurinate eukaryotic and prokaryotic rRNAs and thus interrupt protein synthesis during translation. In the present study, a protein of around 32 kDa, supposedly a RIP isolated from Trichosanthes dioica, was assessed for its potential to induce apoptosis in HeLa cells. Cell viability assay was done to measure cell proliferation and survivability. It was observed that cells viability decreased with the increase of decrease in dilution, i.e. when the sample was an undiluted one, the viability decreased drastically and almost came to less than 10%. To further check whether the isolated RIP could induce apoptosis, HeLa cells were treated with the test RIP. Immunoblotting was carried out using PARP poly (ADP-ribose) polymerase (PARP-1), a 113 kDa nuclear enzyme, which is considered a hallmark of cells undergoing apoptosis. HeLa cells were further analyzed for loss of mitochondrial membrane potential with JC-1 dye, which is an early event during apoptosis. Increased PARP breakdown in the RIP treated cells indicates that cells undergoing apoptosis and progressive loss of red J-aggregate fluorescence indicate that the isolated RIP from Trichosanthes dioica induces apoptosis in HeLa cells. The ability of apoptosis induction is comparable to another known RIP from Momordica charantia, which was used as a positive control. Promising results from the present study warrants the isolated RIP to be further explored for anticancer activities.

2020 ◽  
Vol 17 (1) ◽  
pp. 2-22 ◽  
Author(s):  
Abdel-Baset Halim

:Cell-based assays are an important part of the drug discovery process and clinical research. One of the main hurdles is to design sufficiently robust assays with adequate signal to noise parameters while maintaining the inherent physiology of the cells and not interfering with the pharmacology of target being investigated.:A plethora of assays that assess cell viability (or cell heath in general) are commercially available and can be classified under different categories according to their concepts and principle of reactions. The assays are valuable tools, however, suffer from a large number of limitations. Some of these limitations can be procedural or operational, but others can be critical as those related to a poor concept or the lack of proof of concept of an assay, e.g. those relying on differential permeability of dyes in-and-out of viable versus compromised cell membranes. While the assays can differentiate between dead and live cells, most, if not all, of them can just assess the relative performance of cells rather than providing a clear distinction between healthy and dying cells. The possible impact of relatively high molecular weight dyes, used in most of the assay, on cell viability has not been addressed. More innovative assays are needed, and until better alternatives are developed, setup of current cell-based studies and data interpretation should be made with the limitations in mind. Negative and positive control should be considered whenever feasible. Also, researchers should use more than one orthogonal method for better assessment of cell health.


2020 ◽  
Author(s):  
Chenfei Hu ◽  
Shenghua He ◽  
Young Jae Lee ◽  
Yuchen He ◽  
Edward M. Kong ◽  
...  

AbstractExisting approaches to evaluate cell viability involve cell staining with chemical reagents. However, this step of exogenous staining makes these methods undesirable for rapid, nondestructive and long term investigation. Here, we present instantaneous viability assessment of unlabeled cells using phase imaging with computation specificity (PICS). This new concept utilizes deep learning techniques to compute viability markers associated with the specimen measured by quantitative phase imaging. Demonstrated on HeLa cells culture, the proposed method reports approximately 95% accuracy in identifying injured and dead cells. Further comparison of cell morphology with labeled HeLa cells suggests that potential adverse effect on cell dynamics introduced by the viability reagents can be avoided using the label-free investigation method, which would be valuable for a broad range of biomedical applications.


2022 ◽  
Author(s):  
Aleksandar Radivoievych ◽  
Benjamin Kolp ◽  
Sergii Grebinyk ◽  
Svitlana Prylutska ◽  
Uwe Ritter ◽  
...  

Abstract The acoustic pressure waves of ultrasound (US) penetrate biological tissues deeper than light. Another important feature of US its potential to generate light emission within the excited medium termed sonoluminescence. This promoted the idea of its use as an alternative energy source for photosensitizer excitation. Pristine C60 fullerene (C60), an excellent photosensitizer, was explored in the frame of cancer sonodynamic therapy (SDT). For that purpose, we analyzed C60 effects on human cervix carcinoma HeLa cells in combination with a low intensity US treatment. The time-dependent accumulation of C60 in HeLa cells reached its maximum at 24 h (800 ± 66 ng / 106 cells). Half of extranuclear C60 localized within mitochondria. The efficiency of C60 nanostructure’s sonoexcitation with 1 MHz US was tested with cell viability assay. A significant proapoptotic sonotoxic effect was found for HeLa cells. C60’s ability to induce apoptosis of carcinoma cells after sonoexcitation with US provides a promising novel approach for cancer treatment.


2019 ◽  
Vol 11 (15) ◽  
pp. 1889-1906
Author(s):  
Yaping Li ◽  
Dong-mei Wu ◽  
Ling-mei Kong ◽  
Shuqun Zhang ◽  
Haibo Du ◽  
...  

Aim: Wee1 kinase plays a key role in the arrest of G2/M checkpoint that prevents mitotic entry in response to DNA damage. This work is to discover potent Wee1 inhibitors which can be considered valuable. Materials & Methods: Herein, Ensemble docking using multiple crystal structures was considered an effective strategy in the virtual screening. The performance of 17 scoring functions obtained from different docking software was evaluated for molecular docking. Results: Two novel compounds B1 and A2 were identified as Wee1 inhibitors with IC50 values of 10.23 ± 0.505 and 8.72 ± 0.323 μM, respectively. Further cell viability assay demonstrated that the two active compounds exhibited good anticancer activities. Conclusion: This provides a meaningful starting point for further structure optimization to discover more potent Wee1 inhibitors.


2020 ◽  
Vol 31 (1) ◽  
pp. 32-36
Author(s):  
Kellin Pivatto ◽  
Fabio Luis Miranda Pedro ◽  
Orlando Aguirre Guedes ◽  
Adriana Fernandes da Silva ◽  
Evandro Piva ◽  
...  

Abstract This study evaluated the cytotoxic effect and the ability to inhibit matrix metalloproteinases (MMP-2 and MMP-9) of 0.2% chitosan (CH) and 1% acetic acid (AA) compared with 17% ethylenediaminetetraacetic acid (EDTA). Cell viability assay was performed according to ISO 10993-5 with mouse fibroblasts (L929). The culture was exposed to 0.2% CH, 1% AA, and 17% EDTA. The chelating agents were evaluated immediately after contact with the cells and after 6 h, 12 h, and 24 h of incubation. Cell viability was analyzed using the 3-(4,5-dimethythiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. Inhibition of the gelatinolytic activity of MMP-2 and MMP-9 was evaluated by gelatin zymography. Different concentrations of CH were evaluated: 50 mM, 5 mM, 0.5 mM, and 0.05 mM. EDTA (0.5 mM) was used as a positive control. The results demonstrated that CH and AA had an initial cytotoxic effect, which decreased after 6 h, 12 h, and 24 h, being statistically similar to EDTA (P > 0.05). Additionally, CH at concentrations of 50 mM, 5 mM, and 0.5 mM had an inhibitory effect on MMP-2 and MMP-9, similar to that of the control with EDTA. The chelating agents had no cytotoxic effects after 24 h. MMP-2 and MMP-9 were inhibited by the experimental solutions.


2009 ◽  
Vol 1241 ◽  
Author(s):  
Yuxuan Wang ◽  
Chai Hoon Quek ◽  
Kam W. Leong ◽  
Jiye Fang

AbstractAs a potential biological imaging probe with a long-wavelength of emission, InP quantum dots were prepared via a high-temperature organic solution approach, and successfully transferred into an aqueous system through a ligand-exchange process using various functional surfactants. Photoluminescence and X-ray characterizations confirmed the desired properties of the InP quantum dots. The cytotoxicity of the water-soluble InP quantum dots against phaeochromocytoma PC12 cells as evaluated by the MTS cell viability assay was low relative to a positive control, poly(ethyleneimine). This study suggests a bright potential for this new type of InP quantum dots in bioimaging applications.


2019 ◽  
Vol 26 (12) ◽  
pp. 887-892
Author(s):  
Cynarha Daysy Cardoso da Silva ◽  
Cristiane Moutinho Lagos de Melo ◽  
Elba Verônica Matoso Maciel Carvalho ◽  
Mércia Andréa Lino da Silva ◽  
Rosiely Félix Bezerra ◽  
...  

Background: Lectins have been studied in recent years due to their immunomodulatory activities. Objective: We purified a lectin named OniL from tilapia fish (Oreochromis niloticus) and here we analyzed the cell proliferation and cytokine production in Balb/c mice splenocytes. Methods: Cells were stimulated in vitro in 24, 48, 72 hours and 6 days with different concentrations of OniL and Con A. Evaluation of cell proliferation was performed through [3H]-thymidine incorporation, cytokines were investigated using ELISA assay and cell viability assay was performed by investigation of damage through signals of apoptosis and necrosis. Results: OniL did not promote significant cell death, induced high mitogenic activity in relation to control and Con A and stimulated the cells to release high IL-2 and IL-6 cytokines. Conclusion: These findings suggest that, like Con A, OniL lectin can be used as a mitogenic agent in immunostimulatory assays.


Tumor Biology ◽  
2021 ◽  
Vol 43 (1) ◽  
pp. 37-55
Author(s):  
Yahaya Gavamukulya ◽  
Esther N. Maina ◽  
Hany A. El-Shemy ◽  
Amos M. Meroka ◽  
Geoffrey K. Kangogo ◽  
...  

BACKGROUND: Green synthesized nanoparticles have been earmarked for use in nanomedicine including for the development of better anticancer drugs. OBJECTIVE: The aim of this study was to undertake biochemical evaluation of anticancer activities of green synthesized silver nanoparticles (AgNPs) from ethanolic extracts of fruits (AgNPs-F) and leaves (AgNPs-L) of Annona muricata. METHODS: Previously synthesized silver nanoparticles were used for the study. The effects of the AgNPs and 5-Fluorouracil were studied on PC3, HeLa and PNT1A cells. The resazurin, migration and colonogenic assays as well as qRT-PCR were employed. RESULTS: The AgNPs-F displayed significant antiproliferative effects against HeLa cells with an IC50 of 38.58μg/ml and PC3 cells with an IC50 of 48.17μg/ml but selectively spared normal PNT1A cells (selectivity index of 7.8), in comparison with first line drug 5FU and AgNPs-L whose selectivity index were 3.56 and 2.26 respectively. The migration assay revealed potential inhibition of the metastatic activity of the cells by the AgNPs-F while the colonogenic assay indicated the permanent effect of the AgNPs-F on the cancer cells yet being reversible on the normal cells in contrast with 5FU and AgNPs-L. CASP9 was significantly over expressed in all HeLa cells treated with the AgNPs-F (1.53-fold), AgNPs-L (1.52-fold) and 5FU (4.30-fold). CXCL1 was under expressed in HeLa cells treated with AgNPs-F (0.69-fold) and AgNPs-L (0.58-fold) and over expressed in cells treated with 5FU (4.95-fold), but the difference was not statistically significant. CXCR2 was significantly over expressed in HeLa cells treated with 5FU (8.66-fold) and AgNPs-F (1.12-fold) but under expressed in cells treated with AgNPs-L (0.76-fold). CONCLUSIONS: Here we show that biosynthesized AgNPs especially AgNPs-F can be used in the development of novel and better anticancer drugs. The mechanism of action of the AgNPs involves activation of the intrinsic apoptosis pathway through upregulation of CASP9 and concerted down regulation of the CXCL1/ CXCR2 gene axis.


2021 ◽  
pp. 1-9
Author(s):  
Hong-Wei Hua ◽  
Hao-Sheng Jiang ◽  
Ling Jia ◽  
Yi-Ping Jia ◽  
Yu-Lan Yao ◽  
...  

BACKGROUND: Secreted protein acidic and rich in cysteine (SPARC) is implicated in cancer progression, but its role and associated molecular mechanism in the sorafenib sensitivity of hepatocellular carcinoma cells (HCC) remains elusive. METHODS: Human HCC cell lines Hep3B and HepG2 were treated with sorafenib alone or combined with activator or inhibitor of ferroptosis. Cell viability assay, reactive oxygen species (ROS) assay, lactate dehydrogenase (LDH) assay and western blot were used to study the regulatory mechanism of SPARC on HCC cells. RESULTS: Overexpression of SPARC enhanced the cytotoxic effect of sorafenib in Hep3B and HepG2 cells compared with parental cells. Depletion of SPARC decreased the cytotoxic effect of sorafenib in Hep3B and HepG2 cells compared with parental cells. Moreover, overexpression of SPARC significantly induced LDH release, whereas depletion of SPARC suppressed the release of LDH in Hep3B and HepG2 cells. Inhibition of ferroptosis exerted a clear inhibitory role against LDH release, whereas activation of ferroptosis promoted the release of LDH in HCC cells, as accompanied with deregulated expression of ferroptosis-related proteins. Furthermore, overexpression of SPARC induced oxidative stress, whereas depletion of SPARC suppressed the production of ROS. Deferoxamine (DFX)-induced inhibition of ferroptosis suppressed the production of ROS, while activation of ferroptosis promoted the contents of ROS in HCC cells exposed to sorafenib. CONCLUSION: Our findings give a better understanding of ferroptosis and its molecular mechanism in HCC cells that is regulated by SPARC in response to sorafenib.


2021 ◽  
Vol 22 (13) ◽  
pp. 7063
Author(s):  
Sharon Mordechay ◽  
Shaun Smullen ◽  
Paul Evans ◽  
Olga Genin ◽  
Mark Pines ◽  
...  

Progressive loss of muscle and muscle function is associated with significant fibrosis in Duchenne muscular dystrophy (DMD) patients. Halofuginone, an analog of febrifugine, prevents fibrosis in various animal models, including those of muscular dystrophies. Effects of (+)/(−)-halofuginone enantiomers on motor coordination and diaphragm histopathology in mdx mice, the mouse model for DMD, were examined. Four-week-old male mice were treated with racemic halofuginone, or its separate enantiomers, for 10 weeks. Controls were treated with saline. Racemic halofuginone-treated mice demonstrated better motor coordination and balance than controls. However, (+)-halofuginone surpassed the racemic form’s effect. No effect was observed for (−)-halofuginone, which behaved like the control. A significant reduction in collagen content and degenerative areas, and an increase in utrophin levels were observed in diaphragms of mice treated with racemic halofuginone. Again, (+)-halofuginone was more effective than the racemic form, whereas (−)-halofuginone had no effect. Both racemic and (+)-halofuginone increased diaphragm myofiber diameters, with no effect for (−)-halofuginone. No effects were observed for any of the compounds tested in an in-vitro cell viability assay. These results, demonstrating a differential effect of the halofuginone enantiomers and superiority of (+)-halofuginone, are of great importance for future use of (+)-halofuginone as a DMD antifibrotic therapy.


Sign in / Sign up

Export Citation Format

Share Document