scholarly journals Micronutrient Fortification of Pearl Millet [Pennisetum glaucum (L.) R. Br.] Hybrids using Customized Fertilizer Formulation

2021 ◽  
Vol 12 (5) ◽  
pp. 416-425
Author(s):  
Manoj Kumar ◽  
◽  
Ummed Singh ◽  
P. R. Raiger ◽  
L. Netajit Singh ◽  
...  

The studies were undertaken at ICAR-AICRP on Pearl Millet, Research Farm, ARS, Mandor, Jodhpur (Agriculture University, Jodhpur), Rajasthan, India during July to October of both the 2019 and 2020. The experiment was consisted of three fertilizers (Control, Nutrient supply through straight fertilizers and Nutrient supply through customized fertilizer) and seven pearl millet hybrids (‘MPMH 21’, ‘MPMH 17’, ‘RHB 177’, ‘RHB 173’, ‘HHB 67 (Improved)’, ‘HHB 197’ and ‘HHB 272’) in FRBD and replicated thrice. Findings revealed, application of customized fertilizer of the grade 6:6:2:1 (N:P2O5:K2O:Zn) to pearl millet substantially enhanced Zn concentration in the roots, shoots, and leaves at panicle initiation (47.30, 54.31, 52.33 mg kg-1), 50% flowering (40.30, 50.96, 50.10 mg kg-1) and at harvest (45.27, 46.54, 47.29 mg kg-1), respectively, over control. Similarly, Fe concentration in the roots, shoots and leaves were also increased markedly due to the application of customized fertilizer. Substantially higher Zn (56.42 mg kg-1), Fe (39.50 mg kg-1), Mn (15.13 mg kg-1) and Cu (18.31 mg kg-1) concentrations in the pearl millet grain was also fetched by applying customized fertilizer. Moreover, customized fertilizer application statistically enhanced grain (2,010 kg) and straw (3,417 kg) yields over control. Among pearl millet hybrids, ‘HHB 67 Improved’ recorded substantially higher Zn (61.97 mg kg-1), Fe (43.98 mg kg-1) and Mn (15.46 mg kg-1) concentration in grain and Cu (25.09 mg kg-1) concentration in straw. Albeit, ‘HHB 173’ noticed significantly higher Cu (19.60 mg kg-1) concentration in grain. Further, among hybrids, ‘MPMH 17’ out yielded (1,958 kg ha-1) followed by ‘RHB 173’ (1,795 kg ha-1).

1999 ◽  
Vol 132 (2) ◽  
pp. 139-148 ◽  
Author(s):  
M. V. K. SIVAKUMAR ◽  
S. A. SALAAM

A comprehensive study was conducted over a 4-year period (1984–87) to evaluate the water use, growth and yield responses of pearl millet (Pennisetum glaucum (L.) R. Br.) cv. CIVT grown with and without fertilizer (30 kg P2O5 and 45 kg N ha−1) at the ICRISAT Sahelian Centre, Sadoré, Niger. Our study showed significant year and fertilizer effects on the growth and yield of millet at the study site. Observed year effects were primarily due to the variations in the amount and distribution of rainfall in relation to the potential demand for water. During 1984, 1985 and 1987, total rainfall was below the long term average, while in 1986 it was above average. While the onset of rains (relative to the average date of onset) was early from 1984 to 1986, in 1987 the sowings were delayed by as much as 33 days. Of all the four years, the separation between the treatments in the cumulative evaporation is most evident for 1984, which was a drought year with below-average rainfall in all the months from June to September. Cumulative evaporation patterns in 1985 and 1986 were similar because of regular rains and high average rainfall per rainy day from June to October. In 1987, sowings were delayed until 15 July and only 6·9 mm of rainfall was received per rainy day in July. Hence cumulative evaporation was initially low and showed a significant increase only after two significant rain events in early August. There was a large response to fertilizer in all the years as small additions of fertilizer phosphate increased the soluble phosphate in the soil. Fertilizer application resulted in a small increase in water use (7–14%) in all years except 1987. Increased yield due to the application of fertilizer was accompanied by an increase in the water-use efficiency (WUE) in all the four years with the largest increase in 1985. The beneficial effect of fertilizers could be attributed to the rapid early growth of leaves which can contribute to reduction of soil evaporative losses and increased WUE. Over the four seasons, average increase in the WUE due to the addition of fertilizer was 84%.


1993 ◽  
Vol 29 (1) ◽  
pp. 121-129 ◽  
Author(s):  
K. C. Reddy ◽  
P. L. Visser

SummaryThe performance of two contrasting pearl millet (Pennisetum glaucum) genotypes was compared following five planting dates under rainfed conditions in deep sandy soils at Bengou, Niger in 1986 and 1987. The early and partially photo-sensitive cultivar HKB yielded more grain than the late and photo-sensitive cultivar Somno when planted with the first two seasonal rains. But after delayed planting, the crop growth rate and harvest index of cultivar HKB were reduced, leading to smaller grain yields even though the growth period, rainfall, radiation and temperature were similar at all the planting dates. In contrast, cultivar Somno maintained a small but stable harvest index over various planting dates, so that although its growth period and crop growth rate were reduced by delayed planting, the reduction in grain yield was less. Since agronomic manipulation, such as increased plant density and fertilizer application, can be used to increase crop growth rate, photo-sensitive millet genotypes such as cultivar Somno could be used for late July plantings in the Sudano-Sahelian zone.


Agronomy ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1767
Author(s):  
Yoshihiro Hirooka ◽  
Simon K. Awala ◽  
Kudakwashe Hove ◽  
Pamwenafye I. Nanhapo ◽  
Morio Iijima

The production of pearl millet (Pennisetum glaucum (L.) R.Br.) is important in Namibia, in sub-Saharan Africa, owing to the prevailing low precipitation conditions. Most fields supporting crop production in northern Namibia are located in a network of seasonal wetlands. The aim of the present study was to evaluate the effects of ridging and fertilizer application on the yield and the growth of pearl millet in the seasonal wetlands under different rainfall conditions. The study was conducted for two years (2017–2018) in the experimental fields in northern Namibia, and yield, yield components, and growth parameters were evaluated in relation to the application of different fertilizers (manure and mineral) with and without ridge-furrows. Manure fertilizer application presented the highest yield in 2018, whereas mineral fertilizer application showed the highest yield in 2017. The proportion of rainfall was the highest during the mid-growth period in 2017, and the reproductive stage in 2018. Thus, pearl millet plants under manure fertilization overcame damage resulting from waterlogging stress during the seed setting stage by improving the soil and plant nutrient conditions. In contrast, the plants under mineral fertilization were more tolerant to large amounts of rain during the mid-growth period. In this study, yield was mainly determined by total dry weight, and it was closely related to panicle density in both years. Therefore, we concluded that fertilizer application, including additional fertilizer based on the growth diagnostic, could be important for improving crop production in seasonal wetlands.


2021 ◽  
Vol 13 (15) ◽  
pp. 8460
Author(s):  
Armel Rouamba ◽  
Hussein Shimelis ◽  
Inoussa Drabo ◽  
Mark Laing ◽  
Prakash Gangashetty ◽  
...  

Pearl millet (Pennisetum glaucum) is a staple food crop in Burkina Faso that is widely grown in the Sahelian and Sudano-Sahelian zones, characterised by poor soil conditions and erratic rainfall, and high temperatures. The objective of this study was to document farmers’ perceptions of the prevailing constraints affecting pearl millet production and related approaches to manage the parasitic weeds S. hermonthica. The study was conducted in the Sahel, Sudano-Sahelian zones in the North, North Central, West Central, Central Plateau, and South Central of Burkina Faso. Data were collected through a structured questionnaire and focus group discussions involving 492 participant farmers. Recurrent drought, S. hermonthica infestation, shortage of labour, lack of fertilisers, lack of cash, and the use of low-yielding varieties were the main challenges hindering pearl millet production in the study areas. The majority of the respondents (40%) ranked S. hermonthica infestation as the primary constraint affecting pearl millet production. Respondent farmers reported yield losses of up to 80% due to S. hermonthica infestation. 61.4% of the respondents in the study areas had achieved a mean pearl millet yields of <1 t/ha. Poor access and the high cost of introduced seed, and a lack of farmers preferred traits in the existing introduced pearl millet varieties were the main reasons for their low adoption, as reported by 32% of respondents. S. hermonthica management options in pearl millet production fields included moisture conservation using terraces, manual hoeing, hand weeding, use of microplots locally referred to as ‘zaï’, crop rotation and mulching. These management techniques were ineffective because they do not suppress the below ground S. hermonthica seed, and they are difficult to implement. Integrated management practices employing breeding for S. hermonthica resistant varieties with the aforementioned control measures could offer a sustainable solution for S. hermonthica management and improved pearl millet productivity in Burkina Faso.


2016 ◽  
Vol 26 (5) ◽  
pp. 604-613 ◽  
Author(s):  
John E. Beck ◽  
Michelle S. Schroeder-Moreno ◽  
Gina E. Fernandez ◽  
Julie M. Grossman ◽  
Nancy G. Creamer

Summer cover crop rotations, compost, and vermicompost additions can be important strategies for transition to organic production that can provide various benefits to crop yields, nitrogen (N) availability, and overall soil health, yet are underused in strawberry (Fragaria ×ananassa) production in North Carolina. This study was aimed at evaluating six summer cover crop treatments including pearl millet (Pennisetum glaucum), soybean (Glycine max), cowpea (Vigna unguiculata), pearl millet/soybean combination, pearl millet/cowpea combination, and a no cover crop control, with and without vermicompost additions for their effects on strawberry growth, yields, nutrient uptake, weeds, and soil inorganic nitrate-nitrogen and ammonium-nitrogen in a 2-year field experiment. Compost was additionally applied before seeding cover crops and preplant N fertilizer was reduced by 67% to account for organic N additions. Although all cover crops (with compost) increased soil N levels during strawberry growth compared with the no cover crop treatment, cover crops did not impact strawberry yields in the first year of the study. In the 2nd year, pearl millet cover crop treatments reduced total and marketable strawberry yields, and soybean treatments reduced marketable strawberry yields when compared with the no cover crop treatment, whereas vermicompost additions increased strawberry biomass and yields. Results from this study suggest that vermicompost additions can be important sustainable soil management strategies for transitional and certified organic strawberry production. Summer cover crops integrated with composts can provide considerable soil N, reducing fertilizer needs, but have variable responses on strawberry depending on the specific cover crop species or combination. Moreover, these practices are suitable for both organic and conventional strawberry growers and will benefit from longer-term studies that assess these practices individually and in combination and other benefits in addition to yields.


Sign in / Sign up

Export Citation Format

Share Document