Secure Cyber-Physical Systems: Current trends, tools and open research problems

Author(s):  
Anupam Chattopadhyay ◽  
Alok Prakash ◽  
Muhammad Shafique
Author(s):  
Tomáš Kertis ◽  
Dana Procházková

Abstract The work deals with analysis of different transportation domains in horizontal and vertical meaning. It looks for conformity in approaches and terms. It loans to concept of integral safety, i.e. a tool for ensuring the human security; it covers next engineering areas, for instance dependability management, functional safety, security of cyber-physical systems, technical and physical security, surveillance, occupational safety, safe place, human safety etc. Recent professional approaches of safety management and risk engineering are compared with current trends in transportation. It is clear that advanced professional procedures are needed for planned Smart Cities and Industry 4.0 in transportation domain practice; this work contribute to building the unified experts´ language from various transportation domains.


Electronics ◽  
2019 ◽  
Vol 8 (5) ◽  
pp. 510 ◽  
Author(s):  
Isaías González ◽  
Antonio José Calderón ◽  
João Figueiredo ◽  
João M. C. Sousa

Extensive digitization and interconnection through networks have ushered in a number of new paradigms over the last years: Internet of Things, cyber–physical systems, Industry 4.0, etc. These challenging systems rely on an effective information communication between distributed components. Therefore, the heterogeneity of entities, both hardware and software, must be handled to achieve an operative interoperability and a proper behavior. However, there is also a heterogeneous availability of solutions; different technologies, protocols, and architectures aim to achieve a seamless interconnection. Henceforth, the standardization still requires great efforts from industrial and scientific environments. In this sense, the interface of the open platform communications (OPC) has supported connectivity for automation and supervision infrastructures for more than two decades. The OPC comprises the so-called classic OPC, the original protocol, as well as the last specification, unified architecture (UA). The widespread utilization of the classic OPC together with the powerful functionalities of OPC UA, make the latter one of the main candidates to lead the standardization and systems integration. This paper presents a survey of recent OPC-based systems reported in scientific literature for different domains as well as research projects. The goal of this paper is to provide a broad perspective about the OPC’ applicability and capabilities in order to support the decision about communication interfaces. The results are analyzed and discussed putting special attention on the aforementioned new paradigms. Finally, the main conclusions and open research directions are highlighted.


Author(s):  
Okolie S.O. ◽  
Kuyoro S.O. ◽  
Ohwo O. B

Cyber-Physical Systems (CPS) will revolutionize how humans relate with the physical world around us. Many grand challenges await the economically vital domains of transportation, health-care, manufacturing, agriculture, energy, defence, aerospace and buildings. Exploration of these potentialities around space and time would create applications which would affect societal and economic benefit. This paper looks into the concept of emerging Cyber-Physical system, applications and security issues in sustaining development in various economic sectors; outlining a set of strategic Research and Development opportunities that should be accosted, so as to allow upgraded CPS to attain their potential and provide a wide range of societal advantages in the future.


Author(s):  
Curtis G. Northcutt

The recent proliferation of embedded cyber components in modern physical systems [1] has generated a variety of new security risks which threaten not only cyberspace, but our physical environment as well. Whereas earlier security threats resided primarily in cyberspace, the increasing marriage of digital technology with mechanical systems in cyber-physical systems (CPS), suggests the need for more advanced generalized CPS security measures. To address this problem, in this paper we consider the first step toward an improved security model: detecting the security attack. Using logical truth tables, we have developed a generalized algorithm for intrusion detection in CPS for systems which can be defined over discrete set of valued states. Additionally, a robustness algorithm is given which determines the level of security of a discrete-valued CPS against varying combinations of multiple signal alterations. These algorithms, when coupled with encryption keys which disallow multiple signal alteration, provide for a generalized security methodology for both cyber-security and cyber-physical systems.


Author(s):  
A. V. Smirnov ◽  
T. V. Levashova

Introduction: Socio-cyber-physical systems are complex non-linear systems. Such systems display emergent properties. Involvement of humans, as a part of these systems, in the decision-making process contributes to overcoming the consequences of the emergent system behavior, since people can use their experience and intuition, not just the programmed rules and procedures.Purpose: Development of models for decision support in socio-cyber-physical systems.Results: A scheme of decision making in socio-cyber-physical systems, a conceptual framework of decision support in these systems, and stepwise decision support models have been developed. The decision-making scheme is that cybernetic components make their decisions first, and if they cannot do this, they ask humans for help. The stepwise models support the decisions made by components of socio-cyber-physical systems at the conventional stages of the decision-making process: situation awareness, problem identification, development of alternatives, choice of a preferred alternative, and decision implementation. The application of the developed models is illustrated through a scenario for planning the execution of a common task for robots.Practical relevance: The developed models enable you to design plans on solving tasks common for system components or on achievement of common goals, and to implement these plans. The models contribute to overcoming the consequences of the emergent behavior of socio-cyber-physical systems, and to the research on machine learning and mobile robot control.


Sign in / Sign up

Export Citation Format

Share Document