State-of-the-Art Analysis of Modern Drowsiness Detection Algorithms Based on Computer Vision

Author(s):  
Fudail Hasan ◽  
Alexey Kashevnik
2021 ◽  
Vol 11 (23) ◽  
pp. 11241
Author(s):  
Ling Li ◽  
Fei Xue ◽  
Dong Liang ◽  
Xiaofei Chen

Concealed objects detection in terahertz imaging is an urgent need for public security and counter-terrorism. So far, there is no public terahertz imaging dataset for the evaluation of objects detection algorithms. This paper provides a public dataset for evaluating multi-object detection algorithms in active terahertz imaging. Due to high sample similarity and poor imaging quality, object detection on this dataset is much more difficult than on those commonly used public object detection datasets in the computer vision field. Since the traditional hard example mining approach is designed based on the two-stage detector and cannot be directly applied to the one-stage detector, this paper designs an image-based Hard Example Mining (HEM) scheme based on RetinaNet. Several state-of-the-art detectors, including YOLOv3, YOLOv4, FRCN-OHEM, and RetinaNet, are evaluated on this dataset. Experimental results show that the RetinaNet achieves the best mAP and HEM further enhances the performance of the model. The parameters affecting the detection metrics of individual images are summarized and analyzed in the experiments.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Zhibin Cheng ◽  
Fuquan Zhang

In this paper, a novel flower detection application anchor-based method is proposed, which is combined with an attention mechanism to detect the flowers in a smart garden in AIoT more accurately and fast. While many researchers have paid much attention to the flower classification in existing studies, the issue of flower detection has been largely overlooked. The problem we have outlined deals largely with the study of a new design and application of flower detection. Firstly, a new end-to-end flower detection anchor-based method is inserted into the architecture of the network to make it more precious and fast and the loss function and attention mechanism are introduced into our model to suppress unimportant features. Secondly, our flower detection algorithms can be integrated into the mobile device. It is revealed that our flower detection method is very considerable through a series of investigations carried out. The detection accuracy of our method is similar to that of the state-of-the-art, and the detection speed is faster at the same time. It makes a major contribution to flower detection in computer vision.


2021 ◽  
Vol 11 (2) ◽  
pp. 240
Author(s):  
Samy Bakheet ◽  
Ayoub Al-Hamadi

Due to their high distinctiveness, robustness to illumination and simple computation, Histogram of Oriented Gradient (HOG) features have attracted much attention and achieved remarkable success in many computer vision tasks. In this paper, an innovative framework for driver drowsiness detection is proposed, where an adaptive descriptor that possesses the virtue of distinctiveness, robustness and compactness is formed from an improved version of HOG features based on binarized histograms of shifted orientations. The final HOG descriptor generated from binarized HOG features is fed to the trained Naïve Bayes (NB) classifier to make the final driver drowsiness determination. Experimental results on the publicly available NTHU-DDD dataset verify that the proposed framework has the potential to be a strong contender for several state-of-the-art baselines, by achieving a competitive detection accuracy of 85.62%, without loss of efficiency or stability.


2021 ◽  
pp. 160215
Author(s):  
Sivakumar Musuvadhi Babulal ◽  
Krishnan Venkatesh ◽  
Shen-Ming Chen ◽  
Sayee Kannan Ramaraj ◽  
Chun-Chen Yang

1999 ◽  
Vol 18 (3-4) ◽  
pp. 265-273
Author(s):  
Giovanni B. Garibotto

The paper is intended to provide an overview of advanced robotic technologies within the context of Postal Automation services. The main functional requirements of the application are briefly referred, as well as the state of the art and new emerging solutions. Image Processing and Pattern Recognition have always played a fundamental role in Address Interpretation and Mail sorting and the new challenging objective is now off-line handwritten cursive recognition, in order to be able to handle all kind of addresses in a uniform way. On the other hand, advanced electromechanical and robotic solutions are extremely important to solve the problems of mail storage, transportation and distribution, as well as for material handling and logistics. Finally a short description of new services of Postal Automation is referred, by considering new emerging services of hybrid mail and paper to electronic conversion.


2021 ◽  
Vol 11 (12) ◽  
pp. 5656
Author(s):  
Yufan Zeng ◽  
Jiashan Tang

Graph neural networks (GNNs) have been very successful at solving fraud detection tasks. The GNN-based detection algorithms learn node embeddings by aggregating neighboring information. Recently, CAmouflage-REsistant GNN (CARE-GNN) is proposed, and this algorithm achieves state-of-the-art results on fraud detection tasks by dealing with relation camouflages and feature camouflages. However, stacking multiple layers in a traditional way defined by hop leads to a rapid performance drop. As the single-layer CARE-GNN cannot extract more information to fix the potential mistakes, the performance heavily relies on the only one layer. In order to avoid the case of single-layer learning, in this paper, we consider a multi-layer architecture which can form a complementary relationship with residual structure. We propose an improved algorithm named Residual Layered CARE-GNN (RLC-GNN). The new algorithm learns layer by layer progressively and corrects mistakes continuously. We choose three metrics—recall, AUC, and F1-score—to evaluate proposed algorithm. Numerical experiments are conducted. We obtain up to 5.66%, 7.72%, and 9.09% improvements in recall, AUC, and F1-score, respectively, on Yelp dataset. Moreover, we also obtain up to 3.66%, 4.27%, and 3.25% improvements in the same three metrics on the Amazon dataset.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4312
Author(s):  
Marzena Smol

Circular economy (CE) is an economic model, in which raw materials remain in circulation as long as possible and the generation of waste is minimized. In the fertilizer sector, waste rich in nutrients should be directed to agriculture purposes. This paper presents an analysis of recommended directions for the use of nutrient-rich waste in fertilizer sector and an evaluation of possible interest in this kind of fertilizer by a selected group of end-users (nurseries). The scope of research includes the state-of-the-art analysis on circular aspects and recommended directions in the CE implementation in the fertilizer sector (with focus on sewage-based waste), and survey analysis on the potential interest of nurseries in the use of waste-based fertilizers in Poland. There are more and more recommendations for the use of waste for agriculture purposes at European and national levels. The waste-based products have to meet certain requirements in order to put such products on the marker. Nurserymen are interested in contributing to the process of transformation towards the CE model in Poland; however, they are not fully convinced due to a lack of experience in the use of waste-based products and a lack of social acceptance and health risk in this regard. Further actions to build the social acceptance of waste-based fertilizers, and the education of end-users themselves in their application is required.


Author(s):  
Sebastian Hoppe Nesgaard Jensen ◽  
Mads Emil Brix Doest ◽  
Henrik Aanæs ◽  
Alessio Del Bue

AbstractNon-rigid structure from motion (nrsfm), is a long standing and central problem in computer vision and its solution is necessary for obtaining 3D information from multiple images when the scene is dynamic. A main issue regarding the further development of this important computer vision topic, is the lack of high quality data sets. We here address this issue by presenting a data set created for this purpose, which is made publicly available, and considerably larger than the previous state of the art. To validate the applicability of this data set, and provide an investigation into the state of the art of nrsfm, including potential directions forward, we here present a benchmark and a scrupulous evaluation using this data set. This benchmark evaluates 18 different methods with available code that reasonably spans the state of the art in sparse nrsfm. This new public data set and evaluation protocol will provide benchmark tools for further development in this challenging field.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Tao Xiang ◽  
Tao Li ◽  
Mao Ye ◽  
Zijian Liu

Pedestrian detection with large intraclass variations is still a challenging task in computer vision. In this paper, we propose a novel pedestrian detection method based on Random Forest. Firstly, we generate a few local templates with different sizes and different locations in positive exemplars. Then, the Random Forest is built whose splitting functions are optimized by maximizing class purity of matching the local templates to the training samples, respectively. To improve the classification accuracy, we adopt a boosting-like algorithm to update the weights of the training samples in a layer-wise fashion. During detection, the trained Random Forest will vote the category when a sliding window is input. Our contributions are the splitting functions based on local template matching with adaptive size and location and iteratively weight updating method. We evaluate the proposed method on 2 well-known challenging datasets: TUD pedestrians and INRIA pedestrians. The experimental results demonstrate that our method achieves state-of-the-art or competitive performance.


Author(s):  
Marcos Sanchez Sanchez ◽  
John Iliff

<p>This paper describes the key elements from early planning to completion of a new bridge over the River Barrow which is part of the New Ross bypass in the south of Ireland. The structure has a total length of 887m, with a span arrangement of 36-45-95-230-230-95-70-50-36m. The two central twin spans are the longest of its kind in the world (extrados with a full concrete deck). The bridge carries a dual carriageway with a cable arrangement consisting of a single plane of cables located in the central axis of the deck. The design and construction focused in providing a structure with long term durability, resilience, and a robust approach to design scenarios using the Eurocodes and state of the art analysis techniques, including extreme events such as fire and ship impact<i>.</i></p>


Sign in / Sign up

Export Citation Format

Share Document