Drone Wireless Charging Station using Multiple Transmitter Coils of Different Sizes with Degrees of Freedom in the Air gap

Author(s):  
Semin Choi ◽  
Sungryul Huh ◽  
Sanguk Lee ◽  
Haerim Kim ◽  
Seongho Woo ◽  
...  
2017 ◽  
Vol 4 (2) ◽  
pp. 88-97 ◽  
Author(s):  
Tim Poguntke ◽  
Philipp Schumann ◽  
Karlheinz Ochs

As battery capacities become suitable for the mass market, there is an increasing demand on technologies to charge electric vehicles. Wireless charging is regarded as the most promising technique for automatic and convenient charging. Especially in publicly accessible parking spaces, foreign objects are able to enter the large air gap between the charging coils easily. Since the evoked magnetic field does not meet regulations, wireless charging systems are demanded to take further precautions related to the protection of endangered objects. Thus, additional sensors are required to protect primarily living objects by preventing them from being exposed to the magnetic field. In this paper, we propose a new approach for monitoring the air gap under the vehicle underbody using an automotive radar sensor on the vehicle side. The concept feasibility is evaluated with the help of a prototypical implementation. Further, two-dimensional signal processing techniques are applied to meet the requirements of inductive charging systems. Consequently, this paper provides measurement data for relevant use cases frequently discussed in the community of inductive charging.


2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Moustapha Elwalaty ◽  
Mohamed Jemli ◽  
Hechmi Ben Azza

This paper focuses on the modeling and implementation of an Electric Vehicle (EV) wireless charging system based on inductively coupled power transfer (ICPT) technique where electrical energy can be wirelessly transferred from source to vehicle battery. In fact, the wireless power transfer (WPT) system can solve the fundamental problems of the electric vehicle, which are the short battery life of the EV due to limited battery storage and the user safety by handling high voltage cables. In addition, this paper gives an equivalent electrical circuit of the DC-DC converter for WPT and comprises some basic components, which include the H-bridge inverter, inductive coupling transformer, filter, and rectifier. The input impedance of ICPT with series-series compensation circuit, their phases, and the power factor are calculated and plotted by using Matlab scripts programming for different air gap values between the transmitter coil and receiver coil. The simulation results indicate that it is important to operate the system in the resonance state to transfer the maximum real power from the source to the load. A mathematical expression of optimal equivalent load resistance, corresponding to a maximal transmission efficiency of a wireless charging system, was demonstrated in detail. Finally, a prototype of a wireless charging system has been constructed for using two rectangular coils. The resonant frequency of the designed system with a 500 × 200 mm transmitter coil and a 200 × 100 mm receiver coil is 10 kHz. By carefully adjusting the circuit parameters, the implementation prototype have been successfully transferred a 100 W load power through 10 cm air gap between the coils.


Author(s):  
Laura Soares ◽  
Hao Wang

Many airports are converting their ground fleets to electric vehicles to reduce greenhouse gas emissions and increase airport operation sustainability. Although this paradigm shift is relevant to the environment, it is necessary to understand the economic feasibility to justify the decision. This study used life-cycle cost analysis (LCCA) to compare the economic performance of electrified ground fleets in the airport with a conventional fossil fuel fleet. Three different charging systems (plug-in charging, stationary wireless charging, and dynamic wireless charging) for pushback tractors and inter-terminal buses at a major hub airport were considered in the analysis. Although the conventional fossil fuel options present the lowest initial cost for both fleets, they cost most in a 30-year analysis period. Among three electric charging infrastructures, the plug-in charging station shows the least accumulative cost for pushback tractors, and their cost differences are negligible for inter-terminal buses. Although the electric ground fleet is proved to show economic benefits, the most cost-effective charging infrastructure may vary depending on driving mileage and system design. The use of LCCA to analyze new systems and infrastructures for decision making at the project level is highly recommended.


Author(s):  
Aqueel Ahmad ◽  
Yasser Rafat ◽  
Samir M. Shariff ◽  
Rakan Chabaan

2021 ◽  
Vol 13 (11) ◽  
pp. 5986
Author(s):  
Correa Diego ◽  
Gil Jakub ◽  
Moyano Christian

Many cities around the world encourage the transition to battery-powered vehicles to minimize the carbon footprint of the transportation sector. Deploying large-scale wireless charging infrastructures to charge electric transit buses when loading and unloading passengers have become an effective way to reduce emissions. The standard plug-in electric vehicles have a limited amount of power stored in the battery, resulting in frequent stops to refill the energy. Optimal siting of wireless charging bus stops is essential to reducing these inconveniences and enhancing the sustainability performance of a wireless charging bus fleet. Wireless charging is an innovation of transmitting power through electromagnetic induction to portable electrical devices for energy renewal. Online Electric Vehicle (OLEV) is a new technology that allows the vehicle to be charged while it is in motion, thus removing the need to stop at a charging station. Developed by the Korea Advanced Institute of Science and Technology (KAIST), OLEV picks up electricity from power transmitters buried underground. This paper aims to investigate the cost of the energy logistics for the three types of wireless charging networks: stationary wireless charging (SWC), quasi-dynamic wireless charging (QWC), and dynamic wireless charging (DWC), deployed at stops and size of battery capacity for electric buses, using OLEV technology for a bus service transit in the borough of Manhattan (MN) in New York City (NYC).


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1829
Author(s):  
Ala’ Khalifeh ◽  
Mai Saadeh ◽  
Khalid A. Darabkh ◽  
Prabagarane Nagaradjane

Wireless Charging (WC) is a promising technology that has recently attracted the research community and several companies. WC has a myriad of advantages and diverse applications especially in the emerging Internet of Things (IoT) and Wireless Sensor Networks (WSNs), where energy harvesting and conservation are very crucial to prolonging network lifetime. Several companies have launched WC products and solutions and made them available to the end-users. This paper provides experimental and practical insights about this technology utilizing off-the-shelf (commercially available) products provided by Powercast Inc.; a pioneering company that has made their wireless charging kits and solutions available to the research and academic communities. In addition, a theoretical study of this technology is presented, where a close match between the theoretical and practical results is demonstrated. This will in turn assist the learners and technology adopters to better understand the technology and adopt it in various application scenarios. Furthermore, the paper presents the potential of using WC in unsupervised clustered WSN, where the Cluster Head (CH) node is proposed to be a mobile Unmanned Ground Vehicle (UGV) equipped with a wireless charging station. The UGV position is chosen to be in the centroid of the cluster in order to ensure that wireless charging takes place in the context of the cluster nodes efficiently.


2021 ◽  
Vol 15 ◽  
pp. 21-25
Author(s):  
K. Muthusamy ◽  
P. Rajesh ◽  
B. Gokulavasan

Wireless charging, also known as contactless charging (for shorter range), is a method of supplying energy to electrical devices by sending electricity via an air gap. Wireless charging methods have advanced recently, and commercial solutions have been developed, providing a potential option to overcome the energy bottleneck of typically portable battery-powered gadgets. Due to its simplicity and improved user experience, this technology is attracting a wide range of applications, from low-power gadgets to high-power electric cars. However, including wireless charging into the systems raises a number of difficult challenges in terms of implementation, scheduling, and power management. One such application is to convert the existing system of traditional battery powered railway signaling torchlight into a rechargeable type contactless charging system. This provides a better way of increasing the life time of the product and has better compactness. A rechargeable Li-ion battery must be installed in lieu of the old non-rechargeable battery. To achieve satisfactory efficiency, the magnetic resonance coupling technology of contactless charging can be utilized. Through a shorter air gap, electrical power is transmitted from the charging module (main coil) to the Torchlight (secondary coil). Overall, the present system's cost, size are reduced and lifetime is increased.


Sign in / Sign up

Export Citation Format

Share Document