scholarly journals Simulation of the hydraulic system of a device with self-adaptation for power and kinematic parameters on the working body

2021 ◽  
Vol 21 (1) ◽  
pp. 55-61
Author(s):  
T. A. Khinikadze ◽  
A. T. Rybak ◽  
P. I. Popikov

Introduction. Currently, Russia has adopted a course towards the creation of intelligent machines and equipment. The same holds for mobile technological machines for road construction and public utilities. Therefore, the design and creation of this type of actuators with a self-adaptation function is a critical task.Materials and Methods. A device equipped with a hydraulic drive with self-adaptation to load and coordination of kinematic and power parameters of the principal motion and the feed movement of the working body of the rock- drilling rig, is presented. To study and design the device based on the mathematical modeling methods of a hydraulic drive and adaptive systems, a mathematical model is proposed. It is developed using the foundations of the theory of volumetric stiffness of hydraulic systems. This enables to accurately describe the impact of the dynamic properties of the hydraulic system (compressibility of the working fluid, elastic properties of pipelines, high-pressure  hoses, hydraulic apparatuses) on the dynamic properties of the system as a whole.Results. The mathematical model for a device with self-adaptation includes submodels of adaptive communication, interrelations of power, kinematic and process parameters of rock drilling, as well as mathematical description of the movement of system elements. The solution to the developed mathematical model was performed in the software environment for dynamic modeling of technical systems SimInTech. As a result, general dependences of the adaptive system on the design parameters of the system and the operating conditions are obtained.Discussion and Conclusion. The mathematical model of the presented device shows the fundamental possibility of implementing the principle of self-adaptation in terms of load under external and internal disturbing actions during operation. The results obtained can be used under designing adaptive systems of other technological equipment, for example, for the implementation of deep drilling in workpieces with variable properties in its depth.

Author(s):  
Sergey Fedorovich Jatsun ◽  
Andrei Vasilevich Malchikov

This chapter describes various designs of multilink mobile robots intended to move inside the confined space of pipelines. The mathematical model that describes robot dynamics and controlled motion, which allows simulating different regimes of robot motion and determining design parameters of the device and its control system, is presented. The chapter contains the results of numerical simulations for different types of worm-like mobile robots. The experimental studies of the in-pipe robots prototypes and their analyses are presented in this chapter.


Energies ◽  
2020 ◽  
Vol 13 (1) ◽  
pp. 200 ◽  
Author(s):  
Krzysztof Rajski ◽  
Jan Danielewicz ◽  
Ewa Brychcy

In the present work, the effects of different operating parameters on the performance of a gravity-assisted heat pipe-based indirect evaporative cooler (GAHP-based IEC) were investigated. The aim of the theoretical study is to evaluate accurately the cooling performance indicators, such as the coefficient of performance (COP), wet bulb effectiveness, and cooling capacity. To predict the effectiveness of the air cooler under a variety of conditions, the comprehensive calculation method was adopted. A mathematical model was developed to simulate numerically the heat and mass transfer processes. The mathematical model was validated adequately using experimental data from the literature. Based on the conducted numerical simulations, the most favorable ranges of operating conditions for the GAHP-based IEC were established. Moreover, the conducted studies could contribute to the further development of novel evaporative cooling systems employing gravity-assisted heat pipes as efficient equipment for transferring heat.


2013 ◽  
Vol 291-294 ◽  
pp. 1934-1939
Author(s):  
Jian Jun Peng ◽  
Yan Jun Liu ◽  
Yu Li ◽  
Ji Bin Liu

This thesis put forward a hydraulic wave simulation system based on valve-controlled cylinder hydraulic system, which simulated wave movement on the land. The mathematical model of valve-controlled symmetric cylinder was deduced and the mathematical models of servo valve, displacement sensor and servo amplifier were established according to the schematic diagram of the hydraulic system designed, on the basis of which the mathematical model of hydraulic wave simulation system was obtained. Then the stability of the system was analyzed. The results indicated that the system was reliable.


2014 ◽  
Vol 21 (2) ◽  
pp. 3-8
Author(s):  
Jan P. Michalski

Abstract The paper presents a method of choosing the optimal value of the cargo ships deadweight. The method may be useful at the stage of establishing the main owners requirements concerning the ship design parameters as well as for choosing a proper ship for a given transportation task. The deadweight is determined on the basis of a selected economic measure of the transport effectiveness of ship - the Required Freight Rate (RFR). The mathematical model of the problem is of a deterministic character and the simplifying assumptions are justified for ships operating in the liner trade. The assumptions are so selected that solution of the problem is obtained in analytical closed form. The presented method can be useful for application in the pre-investment ships designing parameters simulation or transportation task studies.


2012 ◽  
Vol 268-270 ◽  
pp. 1517-1522 ◽  
Author(s):  
Guo Jin Chen ◽  
Ting Ting Liu ◽  
Ni Jin ◽  
You Ping Gong ◽  
Huo Qing Feng

The logistics and loading machinery is the typical hydromechatronics integrated system. How to solve the reasonable power match in the driving and lifting process of the logistics and loading machinery, we need to establish the mathematical model of the driving and lifting system, and analyze their control characteristics. Aiming at the load requirements for different operating conditions, this paper studies respectively the dynamic characteristics of the driving and lifting system. Through simulation and computation, the control methods and strategies based on the best performance are proposed. That lays the foundation for the optimization design of the logistics and loading machinery.


2012 ◽  
Vol 538-541 ◽  
pp. 2536-2542
Author(s):  
Zhao Jun Li ◽  
Yu Ling Zhang ◽  
Tao Mao ◽  
Xu Juan Yang

A hydraulic excavator is taken as the object to study. Considering the characteristics of slewing transmission mechanism of hydraulic excavator, the torsional vibration equation is established by the finite element method. According to the torsional vibration equation, the effects of the equivalent moment of inertia of working device on the torsional dynamic properties of slewing transmission mechanism are analyzed. Using the optimization theory, the mathematical model is built, which is by means of the equivalent moment of inertia of working device as objective function and by means of the position parameters of the working device as design variables. Based on the mathematical model, the optimization of torsional dynamic properties of slewing transmission mechanism is studied. Finally, a numerical example is presented.


Author(s):  
Mauri´cio Baldi ◽  
Pable Siqueira Meirelles

This study proposes a robust and cheap hydropneumatic suspension system for agricultural trailers used to spread crop protection. This kind of vehicle has a high dynamic load factor that increases the axles loads when it is in use and require a height control to assure the same spraying efficiency keeping constant the distance between the spray nozzles and the crop. As the tractor has its own hydraulic system, the hydropneumatic suspension conception take in account that height control will be done by the hydraulic fluid, being the mass of gas kept constant. A mathematical model of the hydropneumatic spring stiffness behavior was developed, as well as a methodology to define the suspension parameters. Experimental validation of the mathematical model was carried out through the use of a real agricultural trailer, equipped with a hydropneumatic suspension projected using the procedure presented, and tested in a hydropuls® road simulator.


1993 ◽  
Vol 115 (1) ◽  
pp. 103-109 ◽  
Author(s):  
R. Agrawal ◽  
G. L. Kinzel ◽  
R. Srinivasan ◽  
K. Ishii

In many mechanical systems, the mathematical model can be characterized by m nonlinear equations in n unknowns. The m equations could be either equality constraints or active inequality constraints in a constrained optimization framework. In either case, the mathematical model consists of (n-m) degrees of freedom, and (n-m) unknowns must be specified before the system can be analyzed. In the past, designers have often fixed the set of (n-m) specification variables and computed the remaining n variables using the n equations. This paper presents constraint management algorithms that give the designer complete freedom in the choice of design specifications. An occurrence matrix is used to store relationships among design parameters and constraints, to identify dependencies among the variables, and to help prevent redundant specification. The interactive design of a torsion bar spring is used to illustrate constraint management concepts.


Author(s):  
Volodymyr Rutkevych

The problem of creating an energy-efficient and competitive mechanism for cutting and unloading stalk fodder from trench storage, by developing and justifying the parameters and modes of operation of the adaptive system of hydraulic drives of the mechanism is researched. The principal implementation of the adaptive system of hydraulic drive of the mechanism for cutting and unloading is proposed, in which a spool flow divider is placed between two executive hydraulic motors, which allows to regulate the supply of a U–shaped frame according to the load change which affects the cutting mechanism. The adaptive system of the hydraulic drive of the mechanism allows to stabilize energy consumption for separation of a portion of a stalk fodder under the condition of change and fluctuation of parameters which essentially influence the process of separation and unloading of a stalk fodder from the monolith. The transients in the adaptive systems of hydraulic drives of the mechanism for cutting and unloading of stalk fodder are received and analyzed. As a result of the study, it was found that by changing the operating widths of the slide valve of the separator in the direction of reduction, a significant increase in the responsiveness of the hydraulic drive system of the mechanism for cutting and unloading to the changes in the loading on the cutting apparatus. As a result, the range of the adjustment of the feeding of the hydraulic cylinder of the U–shaped frame, which increases the efficiency of stabilizing the separation process from the monolith of block-portion of stalk fodder with a minimum power of the hydraulic drive system, is substantially expanded. It is noted that the dynamic characteristics of the hydraulic drive of the mechanism for cutting and unloading stalk fodder adaptive to the load are influenced by the design parameters of the spool flow divider which implements feedback. On the basis of the conducted experimental research recommendations on the choice of constructive parameters of the spool flow divider are given.


2022 ◽  
Vol 7 ◽  
pp. 1
Author(s):  
Andrés Vilaboa Díaz ◽  
Pastora M. Bello Bugallo

Buildings are one of the systems that more energy consumed in the European Union. The study of the thermal envelope is interesting in order to reduce the energy losses. For that, a mathematical model able to predict the system response to external temperature variations is developed. With the mathematical model, different thermal envelope elements of a building based on the lag and the cushioning of the resultant wave can be characterized. In addition, it is important to analyse where the insulation is placed, because when the insulation is outside and the thermal mass is inside, the system produces a response with smooth temperature variations than when the insulation is inside. Therefore, placing the outside insulation generates more steady indoor temperatures, increasing the thermal comfort inside the building. To complete the mathematical model that allows predicting the temperature inside a building taking into account the solar inputs and the thermal inertia of the building. This study will help to establish the optimum design parameters in order to build sustainable and comfortable buildings. Furthermore, it will take one step forward in the construction of nearly Zero-Energy Buildings.


Sign in / Sign up

Export Citation Format

Share Document