How Artificial Intelligence, Machine Learning and Deep Learning are Radically Different?

Author(s):  
Tanya Tiwari ◽  
Tanuj Tiwari ◽  
Sanjay Tiwari

There is a lot of confusion these days about Artificial Intelligence (AI), Machine Learning (ML) and Deep Learning (DL). A computer system able to perform tasks that normally require human intelligence, such as visual perception, speech recognition, decision-making, and translation between languages. Artificial Intelligence has made it possible. Deep learning is a subset of machine learning, and machine learning is a subset of AI, which is an umbrella term for any computer program that does something smart. In other words, all machine learning is AI, but not all AI is machine learning, and so forth. Machine Learning represents a key evolution in the fields of computer science, data analysis, software engineering, and artificial intelligence. Machine learning (ML)is a vibrant field of research, with a range of exciting areas for further development across different methods and applications. These areas include algorithmic interpretability, robustness, privacy, fairness, inference of causality, human-machine interaction, and security. The goal of ML is never to make “perfect” guesses, because ML deals in domains where there is no such thing. The goal is to make guesses that are good enough to be useful. Deep learning is a particular kind of machine learning that achieves great power and flexibility by learning to represent the world as nested hierarchy of concepts, with each concept defined in relation to simpler concepts, and more abstract representations computed in terms of less abstract ones. This paper gives an overview of artificial intelligence, machine learning & deep learning techniques and compare these techniques.

2021 ◽  
Author(s):  
Ramy Abdallah ◽  
Clare E. Bond ◽  
Robert W.H. Butler

<p>Machine learning is being presented as a new solution for a wide range of geoscience problems. Primarily machine learning has been used for 3D seismic data processing, seismic facies analysis and well log data correlation. The rapid development in technology with open-source artificial intelligence libraries and the accessibility of affordable computer graphics processing units (GPU) makes the application of machine learning in geosciences increasingly tractable. However, the application of artificial intelligence in structural interpretation workflows of subsurface datasets is still ambiguous. This study aims to use machine learning techniques to classify images of folds and fold-thrust structures. Here we show that convolutional neural networks (CNNs) as supervised deep learning techniques provide excellent algorithms to discriminate between geological image datasets. Four different datasets of images have been used to train and test the machine learning models. These four datasets are a seismic character dataset with five classes (faults, folds, salt, flat layers and basement), folds types with three classes (buckle, chevron and conjugate), fault types with three classes (normal, reverse and thrust) and fold-thrust geometries with three classes (fault bend fold, fault propagation fold and detachment fold). These image datasets are used to investigate three machine learning models. One Feedforward linear neural network model and two convolutional neural networks models (Convolution 2d layer transforms sequential model and Residual block model (ResNet with 9, 34, and 50 layers)). Validation and testing datasets forms a critical part of testing the model’s performance accuracy. The ResNet model records the highest performance accuracy score, of the machine learning models tested. Our CNN image classification model analysis provides a framework for applying machine learning to increase structural interpretation efficiency, and shows that CNN classification models can be applied effectively to geoscience problems. The study provides a starting point to apply unsupervised machine learning approaches to sub-surface structural interpretation workflows.</p>


Author(s):  
Thiyagarajan P.

Digitalization is the buzz word today by which every walk of our life has been computerized, and it has made our life more sophisticated. On one side, we are enjoying the privilege of digitalization. On the other side, security of our information in the internet is the most concerning element. A variety of security mechanisms, namely cryptography, algorithms which provide access to protected information, and authentication including biometric and steganography, provide security to our information in the Internet. In spite of the above mechanisms, recently artificial intelligence (AI) also contributes towards strengthening information security by providing machine learning and deep learning-based security mechanisms. The artificial intelligence (AI) contribution to cyber security is important as it serves as a provoked reaction and a response to hackers' malicious actions. The purpose of this chapter is to survey recent papers which are contributing to information security by using machine learning and deep learning techniques.


2019 ◽  
Author(s):  
Lu Liu ◽  
Ahmed Elazab ◽  
Baiying Lei ◽  
Tianfu Wang

BACKGROUND Echocardiography has a pivotal role in the diagnosis and management of cardiovascular diseases since it is real-time, cost-effective, and non-invasive. The development of artificial intelligence (AI) techniques have led to more intelligent and automatic computer-aided diagnosis (CAD) systems in echocardiography over the past few years. Automatic CAD mainly includes classification, detection of anatomical structures, tissue segmentation, and disease diagnosis, which are mainly completed by machine learning techniques and the recent developed deep learning techniques. OBJECTIVE This review aims to provide a guide for researchers and clinicians on relevant aspects of AI, machine learning, and deep learning. In addition, we review the recent applications of these methods in echocardiography and identify how echocardiography could incorporate AI in the future. METHODS This paper first summarizes the overview of machine learning and deep learning. Second, it reviews current use of AI in echocardiography by searching literature in the main databases for the past 10 years and finally discusses potential limitations and challenges in the future. RESULTS AI has showed promising improvements in analysis and interpretation of echocardiography to a new stage in the fields of standard views detection, automated analysis of chamber size and function, and assessment of cardiovascular diseases. CONCLUSIONS Compared with machine learning, deep learning methods have achieved state-of-the-art performance across different applications in echocardiography. Although there are challenges such as the required large dataset, AI can provide satisfactory results by devising various strategies. We believe AI has the potential to improve accuracy of diagnosis, reduce time consumption, and decrease the load of cardiologists.


2021 ◽  
Vol 31 (11) ◽  
pp. 2150173
Author(s):  
Miguel A. F. Sanjuán

Machine learning and deep learning techniques are contributing much to the advancement of science. Their powerful predictive capabilities appear in numerous disciplines, including chaotic dynamics, but they miss understanding. The main thesis here is that prediction and understanding are two very different and important ideas that should guide us to follow the progress of science. Furthermore, the important role played by nonlinear dynamical systems is emphasized for the process of understanding. The path of the future of science will be marked by a constructive dialogue between big data and big theory, without which we cannot understand.


2021 ◽  
Vol 11 (11) ◽  
pp. 1213
Author(s):  
Morteza Esmaeili ◽  
Riyas Vettukattil ◽  
Hasan Banitalebi ◽  
Nina R. Krogh ◽  
Jonn Terje Geitung

Primary malignancies in adult brains are globally fatal. Computer vision, especially recent developments in artificial intelligence (AI), have created opportunities to automatically characterize and diagnose tumor lesions in the brain. AI approaches have provided scores of unprecedented accuracy in different image analysis tasks, including differentiating tumor-containing brains from healthy brains. AI models, however, perform as a black box, concealing the rational interpretations that are an essential step towards translating AI imaging tools into clinical routine. An explainable AI approach aims to visualize the high-level features of trained models or integrate into the training process. This study aims to evaluate the performance of selected deep-learning algorithms on localizing tumor lesions and distinguishing the lesion from healthy regions in magnetic resonance imaging contrasts. Despite a significant correlation between classification and lesion localization accuracy (R = 0.46, p = 0.005), the known AI algorithms, examined in this study, classify some tumor brains based on other non-relevant features. The results suggest that explainable AI approaches can develop an intuition for model interpretability and may play an important role in the performance evaluation of deep learning models. Developing explainable AI approaches will be an essential tool to improve human–machine interactions and assist in the selection of optimal training methods.


Author(s):  
Amit Kumar Tyagi ◽  
Poonam Chahal

With the recent development in technologies and integration of millions of internet of things devices, a lot of data is being generated every day (known as Big Data). This is required to improve the growth of several organizations or in applications like e-healthcare, etc. Also, we are entering into an era of smart world, where robotics is going to take place in most of the applications (to solve the world's problems). Implementing robotics in applications like medical, automobile, etc. is an aim/goal of computer vision. Computer vision (CV) is fulfilled by several components like artificial intelligence (AI), machine learning (ML), and deep learning (DL). Here, machine learning and deep learning techniques/algorithms are used to analyze Big Data. Today's various organizations like Google, Facebook, etc. are using ML techniques to search particular data or recommend any post. Hence, the requirement of a computer vision is fulfilled through these three terms: AI, ML, and DL.


2021 ◽  
Author(s):  
Yew Kee Wong

In the information era, enormous amounts of data have become available on hand to decision makers. Big data refers to datasets that are not only big, but also high in variety and velocity, which makes them difficult to handle using traditional tools and techniques. Due to the rapid growth of such data, solutions need to be studied and provided in order to handle and extract value and knowledge from these datasets. Machine learning is a method of data analysis that automates analytical model building. It is a branch of artificial intelligence based on the idea that systems can learn from data, identify patterns and make decisions with minimal human intervention. Such minimal human intervention can be provided using machine learning, which is the application of advanced deep learning techniques on big data. This paper aims to analyse some of the different machine learning and deep learning algorithms and methods, aswell as the opportunities provided by the AI applications in various decision making domains.


2019 ◽  
Vol 22 (10) ◽  
pp. 1868-1884 ◽  
Author(s):  
Rainer Mühlhoff

Today, artificial intelligence (AI), especially machine learning, is structurally dependent on human participation. Technologies such as deep learning (DL) leverage networked media infrastructures and human-machine interaction designs to harness users to provide training and verification data. The emergence of DL is therefore based on a fundamental socio-technological transformation of the relationship between humans and machines. Rather than simulating human intelligence, DL-based AIs capture human cognitive abilities, so they are hybrid human-machine apparatuses. From a perspective of media philosophy and social-theoretical critique, I differentiate five types of “media technologies of capture” in AI apparatuses and analyze them as forms of power relations between humans and machines. Finally, I argue that the current hype about AI implies a relational and distributed understanding of (human/artificial) intelligence, which I categorize under the term “cybernetic AI.” This form of AI manifests in socio-technological apparatuses that involve new modes of subjectivation, social control, and digital labor.


Author(s):  
Christian Janiesch ◽  
Patrick Zschech ◽  
Kai Heinrich

AbstractToday, intelligent systems that offer artificial intelligence capabilities often rely on machine learning. Machine learning describes the capacity of systems to learn from problem-specific training data to automate the process of analytical model building and solve associated tasks. Deep learning is a machine learning concept based on artificial neural networks. For many applications, deep learning models outperform shallow machine learning models and traditional data analysis approaches. In this article, we summarize the fundamentals of machine learning and deep learning to generate a broader understanding of the methodical underpinning of current intelligent systems. In particular, we provide a conceptual distinction between relevant terms and concepts, explain the process of automated analytical model building through machine learning and deep learning, and discuss the challenges that arise when implementing such intelligent systems in the field of electronic markets and networked business. These naturally go beyond technological aspects and highlight issues in human-machine interaction and artificial intelligence servitization.


Author(s):  
Jyoti Dabass ◽  
Bhupender Singh Dabass

Over the years, artificial intelligence (AI) is spreading its roots in different areas by utilizing the concept of making the computers learn and handle complex tasks that previously require substantial laborious tasks by human beings. With better accuracy and speed, AI is helping lawyers to streamline work processing. New legal AI software tools like Catalyst, Ross intelligence, and Matlab along with natural language processing provide effective quarrel resolution, better legal clearness, and superior admittance to justice and fresh challenges to conventional law firms providing legal services using leveraged cohort correlate model. This paper discusses current applications of legal AI and suggests deep learning and machine learning techniques that can be applied in future to simplify the cumbersome legal tasks.


Sign in / Sign up

Export Citation Format

Share Document