scholarly journals Repeatability of subjective grading in fur animals III. Grading of live blue foxes in different environmental conditions

1992 ◽  
Vol 1 (3) ◽  
pp. 315-322
Author(s):  
Hilkka Kenttämies ◽  
Kerstin Smeds

Association between repeatedly scored body size and fur characteristics were studied in live blue foxes. Gradings in cages and outside cages in lamplight and daylight were also compared. Colour tended to be easier and clarity more difficult to evaluate than the other traits. Differences between judges in accuracy of grading were greater than between various grading environments. The grading was more reliable outside cages than within cages. The most uniform results were obtained when the same judge graded the animals in the same environmental conditions.

Author(s):  
Henglong Xu ◽  
Yong Jiang ◽  
Wei Zhang ◽  
Mingzhuang Zhu ◽  
Khaled A. S. Al-Rasheid ◽  
...  

The annual variations in body-size spectra of planktonic ciliate communities and their relationships to environmental conditions were studied based on a 12-month dataset (June 2007 to May 2008) from Jiaozhou Bay on the Yellow Sea coast of northern China. Based on the dataset, the body sizes of the ciliates, expressed as equivalent spherical diameters, included five ranks: S1 (5–35 μm); S2 (35–55 μm); S3 (55–75 μm); S4 (75–100 μm); and S5 (100–350 μm). These body-size ranks showed a clear temporal succession of dominance in the order of S2 (January–April) → S1 (May–July) → S4 (August–September) → S3 (October–December). Multivariate analyses showed that the temporal variations in their body-size patterns were significantly correlated with changes in environmental conditions, especially water temperature, salinity, dissolved oxygen concentration (DO) and nutrients. In terms of abundance, rank S2 was significantly correlated with water temperature, DO and nutrients, whereas ranks S4 and S5 were correlated with the salinity and nutrients respectively (P < 0.05). These results suggest that the body-size patterns of planktonic ciliate communities showed a clear temporal pattern during an annual cycle and significantly associated with environmental conditions in marine ecosystems.


2002 ◽  
Vol 15 (2) ◽  
pp. 205 ◽  
Author(s):  
Christina Flann ◽  
Pauline Y. Ladiges ◽  
Neville G. Walsh

A study of morphological variation in Leptorhynchos squamatus (Labill.) Less. across its range in south-eastern Australia was undertaken to test the hypothesis that L. squamatus includes two taxa. Phenetic pattern analyses of both field-collected and herbarium specimens on the basis of morphology confirmed two major groups. Bract, cypsela, pappus bristle and leaf characters were particularly important in separating the two groups. The taxa are separated by altitude differences with one being a low-altitude plant found in many habitats and the other being a high-altitude taxon that is a major component of alpine meadows. Lowland plants have dark bract tips, fewer and wider pappus bristles than alpine plants, papillae on the cypselas and more linear leaves. A somewhat intermediate population from the Major Mitchell Plateau in the Grampians shows some alpine and some lowland characters but is included in the lowland taxon. Seeds from five populations (two alpine, two lowland and Major Mitchell) were germinated and plants grown for 18 weeks under four controlled sets of environmental conditions. The experiment showed that leaf size and some other characters are affected by environmental conditions, but that there are underlying genetic differences between the lowland and alpine forms. Leptorhynchos squamatus subsp. alpinus Flann is described here to accommodate the highland taxon.


Author(s):  
Ekta Sharma

The Presented summary paper target is to draw the attention of the public to the benefits of Environment and how we are connected to the Environment. To show that if there’s any change in the Environmental conditions, then how the conditions change in human beings lives. Living Being, whether a Human Being or Animals or plants,  are all directly or indirectly Dependent on the Environment for their Survival. When asked truly it can be said that none of the living being can survive without the presence of Environment. It is difficult to find absolutely natural environments, and it is common that the naturalness varies in a continuum, from ideally 100% natural in one extreme to 0% natural in the other. More precisely, we can consider the different aspects or components of an environment, and see that their degree of naturalness is not uniform.


1975 ◽  
Vol 38 (6) ◽  
pp. 1073-1077 ◽  
Author(s):  
J. S. Hayward ◽  
J. D. Eckerson ◽  
M. L. Collis

Five different behaviors of man while in cold ocean water (9–10 degrees C) were assessed for their effect on rate of progress into hypothermia. With subjects wearing lifejackets, two thermally protective behaviors were studied which reduce exposure to the water of areas of body surface with high relative heat loss potential. One was huddling of three persons and the other a self-huddle behavior (HELP or Heat Escape Lessening Posture). These two behaviors resulted in significant reductions of rectal temperature cooling rate of 66 per cent and 69 per cent, respectively, of that of a control behavior. With no flotation available, two survival swimming behaviors (treading water and drownproofing) were shown to result in significant increases in cooling rate to 134 per cent and 182 per cent, respectively, of the control behavior. Potential swimming distance of subjects wearing a life-jacket was 0.85 miles in water near 12 degrees C before predicted incapacitation by hypothermia. It was concluded that behavioral variables can be of major importance in determining survival time in cold water through modulation of cooling rate associated with other variables such as fatness, body size, and clothing.


1975 ◽  
Vol 19 (3) ◽  
pp. 301-304
Author(s):  
Ann E. Martin

The present study was conducted to investigate the effects of environmental conditions on visual workload. The environmental variables used were temperature, studied at levels of 45°F., WBGT, and 95°F., WBGT; and noise, studied at 83 dBA intermittent noise and 93 dBA continuous noise. Workload was defined as the amount of attention demanded from an operator as measured by performance decrement on a secondary task while performing a primary and secondary task simultaneously. The secondary task was reading random numbers, and the primary task was reading word lists. Significant differences (p<.05) were found between the control condition and all experimental conditions. The low temperature and high temperature-continuous noise conditions were significantly different from the other conditions. Noise and temperature were found to significantly increase workload (p<05).


2019 ◽  
Vol 188 (3) ◽  
pp. 860-864 ◽  
Author(s):  
Harry A Meyer ◽  
Hannah E Larsen ◽  
Nézira O Akobi ◽  
Garret Broussard

Abstract Tardigrade behavioural studies have focused on responses to abiotic environmental conditions. Predator–prey interactions have received some attention, but not how predators and prey might detect one another. Here, we investigate whether a predatory tardigrade species is attracted to, and a potential prey tardigrade avoids, areas previously occupied by the other. In our experiments, Milnesium lagniappe was the predator and Macrobiotus acadianus the prey. Petri dishes with non-nutrient agar were used as experimental arenas. In one treatment, we allowed Macrobiotus to roam over half of the agar for 20 h, while leaving the other half free of Macrobiotus. We then removed the prey and introduced the predator. In the control treatment, no prey were added. Results indicated that Milnesium individuals were significantly concentrated in the area previously occupied by Macrobiotus, whereas no such concentration was evident when Macrobiotus had not been present. A similar protocol was used to test whether Macrobiotus avoided areas previously occupied by the predator. As expected, Macrobiotus were significantly concentrated in the area never occupied by Milnesium, unlike the control treatment. These results suggest that both species can detect the other without physical contact and react accordingly. Given that the experiments were conducted in darkness, detection is probably olfactory.


2019 ◽  
Author(s):  
Wataru Yamamoto ◽  
Rafael Yuste

AbstractThe neural code relates the activity of the nervous system to the activity of the muscles to the generation of behavior. To decipher it, it would be ideal to comprehensively measure the activity of the entire nervous system and musculature in a behaving animal. As a step in this direction, we used the cnidarian Hydra vulgaris to explore how physiological and environmental conditions alter the activity of the entire neural and muscle tissue and affect behavior. We used whole-body calcium imaging of neurons and muscle cells and studied the effect of temperature, media osmolarity, nutritional state and body size on body contractions.In mounted Hydra, changes in temperature, nutrition or body size did not have a major effect on neural or muscle activity, or on behavior. But changes in media osmolarity altered body contractions, increasing them in hipo-osmolar media solutions and decreasing them in hyperosmolar media. Similar effects were seen in ectodermal, but not in endodermal muscle. Osmolarity also bidirectionally changed the activity of contraction bursts neurons, but not of rhythmic potential neurons.These findings show osmolarity-dependent changes in neuronal activity, muscle activity, and contractions, consistent with the hypothesis that contraction burst neurons respond to media osmolarity, activating ectodermal muscle to generate contraction bursts. This dedicated circuit could serve as an excretory system to prevent osmotic injury. This work demonstrates the feasibility of studying the entire neuronal and muscle activity of behaving animals.Significance StatementWe imaged whole-body muscle and neuronal activity in Hydra in response to different physiological and environmental conditions. Osmolarity bidirectionally altered Hydra contractile behavior. These changes were accompanied by corresponding changes in the activity of one neuronal circuit and one set of muscles. This work is a step toward comprehensive deciphering of the mechanisms of animal behavior by measuring the activity of all neurons and muscle cells.


2007 ◽  
pp. 55-67 ◽  
Author(s):  
Slobodan Milanovic

The development of Gypsy moth (Lymantria dispar L) was monitored in laboratory conditions, on the foliage of the species Quercus cerris L. Quercus petraea (Matt) Liebl. and Quercus robur L. The experiment was established in the controlled environmental conditions, at the temperature of 25?C, photoperiod 14:10 (day: night) and relative humidity 70%. The objective of the research was to determine the suitability of the study host plant species for gypsy moth development. The study results show that Gypsy moth caterpillars cultivated on Q. petraea foliage had a lower survival, higher number of moultings, longer preadult development and lower fecundity, which makes this species less suitable compared to the other two. Gypsy moth caterpillars cultivated on Q. cerris foliage had the highest survival degree the lowest number of moultings, the shortest preadult development and the highest fecundity, which makes this species the most favourable for gypsy moth development. Q. robur was between the former two species in this respect.


2017 ◽  
Author(s):  
Abdel H. Halloway ◽  
Christopher J. Whelan ◽  
Çağan H. Şekercioğlu ◽  
Joel S. Brown

AbstractAdaptations can be thought of as evolutionary technologies which allow an organism to exploit environments. Among convergent taxa, adaptations may be largely equivalent with the taxa operating in a similar set of environmental conditions, divergent with the taxa operating in different sets of environmental conditions, or superior with one taxon operating within an extended range of environmental conditions than the other. With this framework in mind, we sought to characterize the adaptations of two convergent nectarivorous bird families, the New World hummingbirds (Trochilidae) and Old World sunbirds (Nectariniidae), by comparing their biogeography. Looking at their elevational and latitudinal gradients, hummingbirds not only extend into but also maintain species richness in more extreme environments. We suspect that hummingbirds have a superior key adaptation that sunbirds lack, namely a musculoskeletal architecture that allows for hovering. Through biogeographic comparisons, we have been able to assess and understand adaptations as evolutionary technologies among two convergent bird families, a process that should work for most taxa.


1967 ◽  
Vol 32 (1) ◽  
pp. 89-112 ◽  
Author(s):  
George G. Rose

A self-contained mechanical system for circulating nutrient fluid through 12 tissue culture chambers is described in detail. This system utilizes nonperforated cellophane membranes in the chambers which separate the circulating nutrient from the tissue culture environments. The nutrient, therefore, is dialyzed through the cellophane of each chamber; some cell products are retained in the microenvironment between the closely apposed cellophane and cover slip, whereas the other cell products move from chamber to chamber in the circulating nutrient. The resultant environmental conditions directed by the circumfusion systems are highly favorable for maintaining the differentiation of chick embryo tissues over protracted periods; a number of micrographs are shown.


Sign in / Sign up

Export Citation Format

Share Document