Non-Standard Methods for Assessing the Quality of Intumescent Coatings

Author(s):  
A.V. Martynov ◽  
◽  
O.V. Popova ◽  
V.V. Grekov ◽  
◽  
...  

The main most frequently used structural materials are monolithic reinforced concrete, steel profiles and lightweight thin-walled building structures, which in case of fire at temperatures above 500 °C lose their mechanical properties, deform, and collapse. To protect the load-bearing structures from dangerous deformations for a certain time before the start of extinguishing a fire, various fire-retardant materials are used, among which thin-layer intumescent coatings occupy a special place. Serious problems with the quality of intumescent coatings are associated with the use by manufacturers of paint components (often counterfeit products of low quality) that do not correspond to those stated in the certificates. In these cases, the intumescent coating does not guarantee the formation of a high-quality protective layer of the coke foam in case of fire. Standard methods for assessing the quality of such coatings allow to assess appearance, thickness, and adhesion of the coating prior to coke foam formation. However, it is required to check directly on the object the additional non-standard parameters of the intumescent coatings: intumescence coefficient, appearance and strength of the coke foam. Ways are described related to the implementation of measuring the structural and mechanical properties of the coke foam: intumescence coefficient, penetration and shear-breakout strength. It is proposed to measure the strength characteristics of the coke foam by the penetrometry method on an original installation (analogue of a cone penetrometer). The proposed measurement method is simple, demonstrative and does not require expensive equipment. The dependence is revealed concerning the strength of the coke foam on its density, which is determined by the intumescence coefficient at all other things being equal. The higher the intumescence coefficient, the lower the density and strength of the coke foam. Therefore, high values of the intumescence coefficient do not guarantee the reliability of fire protection. It is recommended to set normatively limit values for the intumescence coefficient, which will differ for different compositions of the intumescent paints.

2020 ◽  
Vol 1006 ◽  
pp. 87-92
Author(s):  
Andrii Kovalov ◽  
Yurii Otrosh ◽  
Oleg Semkiv ◽  
Volodymyr Konoval ◽  
Oleksandr Chernenko

In the paper, the tests have been analysed for fire-resistant quality of the hollow-core reinforced-concrete floors with fire-retardant plaster covering under standard temperature regime of the fire. Using the methodology for determining the characteristics of fire-retardant coatings ability for reinforced-concrete floors, the dependences have been obtained of the fire-retardant coating thickness from the concrete protective layer of a hollow-core reinforced-concrete floor for a fire resistance limit of 180 minutes with a temperature regime of hydrocarbon fire and a tunnel curve according to the Netherlands standards (RWS). It has been concluded about the minimum required thickness of the studied fire-retardant coating to provide the required fire resistance limit of a hollow-core reinforced-concrete floor under the indicated fire regimes.


2021 ◽  
Vol 320 ◽  
pp. 02004
Author(s):  
Sergey Bulaga ◽  
Nikolai Smirnov ◽  
Vladimir Bulgakov ◽  
Ol’ga Zuban’ ◽  
Andrei Ustinov ◽  
...  

The analysis of the existing regulatory documents in the field of quality control of fire-resistant treatment of various products and structures is carried out. The history of the development of the system of rationing the quality of fire protection is described. Information about the new standard for quality control of fire protection is provided. An example of application of methods of quality control of fire-retardant treatment is presented: the algorithm of quality control of two intumescent coatings, one taken from the existing facility, and one chosen as a control sample (the certified intumescent paint) has been practically executed. As a result, it was established that the existing quality control methods, including methods of thermal analysis, can provide adequate results and should be used ubiquitously.


2021 ◽  
Vol 2 (10 (110)) ◽  
pp. 51-58
Author(s):  
Yuriy Tsapko ◽  
Roman Vasylyshyn ◽  
Oleksandr Melnyk ◽  
Vasyl Lomaha ◽  
Аleksii Tsapko ◽  
...  

The analysis of fire-protective materials for wooden building structures was carried out and the need to develop reliable methods for studying the process of washing out fire retardants from the surface of the building structure, which is necessary for the creation of new types of fire-protective materials, was established. That is why there arises a need to determine the conditions for the formation of a barrier for washing out and to establish a mechanism for inhibition of moisture transmission to the material. In this regard, a mathematical model was built of washing out fire retardants using a polymeric shell made of organic material as a coating, which makes it possible to estimate the effectiveness of a polymer shell by the amount of the washed-out fire retardant. According to the experimental data and theoretical dependences, the dynamics of the release of fire retardants from the fire-protective layer of the coating was calculated; it did not exceed 1.0 %, and therefore, ensures fire protection of timber. The results of determining the weight loss of the sample under the influence of water indicate the ambiguous impact of the nature of protection on the washout. In particular, this implies the availability of data sufficient for performing a high-quality process of moisture diffusion inhibition and, based on it, detection of the moment, from which a decrease in efficiency of a coating begins. The experimental studies proved that a sample of fire-protected timber after exposure to water for 30 days withstood the influence of a heat flow. In particular, the loss of timber weight after the temperature exposure was less than 6 %, and the temperature of flue gases did not exceed 185 °C. Thus, there is a reason to assert the possibility of directed control of the processes of fire protection of timber through the use of polymer coatings capable of forming a protective layer on the surface of fire-protected material, which inhibits the rate of washing out the fire retardants


Author(s):  
Vyacheslav REMNEV ◽  
Lidiya KOSHELEVA ◽  
Daniil RYAZANTSEV

The impregnating compositions for increasing the strength of concrete surfaces are analyzed, standard methods for testing the physical and mechanical properties of concrete after its impregnation are considered. The need for a uniform classifier and methodology for assessing the quality of impregnation of concrete with various reinforcing materials has been pointed out.


Author(s):  
Trapti Sharma ◽  
R. P. Nagar ◽  
R. C. Gaur ◽  
Pooja Gupta ◽  
Charanjit Kaur

In Rajasthan state the ground waters of some areas like Ramganj-mandi, Morak, Barmer, Jaisalmer, Chittor and Udaipur etc. are susceptible from drinking point of view.To test the quality of groundwater in Chittor district 14, ground water samples were collected from various places and analyzed for pH, E.C., Fluoride and Nitrate parameters by standard methods (A.P.H. A., Washington, USA, 1995). The study revealed that none of the ground waters was found suitable completely from drinking point of view. Some are having electrical conductivity > 1.4 dS/m, some are having pH >8.5, some area having fluoride >1.5 ppm and some are having nitrate>45 ppm. These are the limits of various parameters permitted by various International authorities like Bureau of Indian Standard, Indian Council of Medical Research,world health Organization etc. for drinking waters. So, it is recommended to the residents of above areas to use water for drinking purpose only after reverse osmosis or adopting suitable method of removing excess of Fluoride and Nitrate for drinking water to avoid unwanted pathogenic diseases harmful for human health.


2016 ◽  
Vol 8 (15) ◽  
pp. 47-54
Author(s):  
Haspiadi Haspiadi

The purpose of this research is to know the influence of pressure and use of conplast against mechanical properties which are a Modulus of Elasticity (MOE) and Modulus of Rupture (MOR) of plasterboard. The study is done because still low quality of plasterboard made from a mixture of ashes of oil-palm shell especially of the mechanical properties compared to the controls. The method of this reserach used variation of printed pressure and the addition of conplast. Test result is obtained that the highest value of Modulus of Elasticity (MOE) 90875.94 Kg/cm2, Modulus of Rupture (MOR) 61.16 Kg/cm2 and density values in generally good printed at the pressure 60 g/cm3 and the addition of conplast 25% as well as the composition of the ash of palm shell oil 40%: limestone 40%: cement 15%: fiber 5% and 300 mL of water. ABSTRAK Tujuan dari penelitian ini adalah untuk mengetahui pengaruh tekanan dan penggunaan conplast terhadap sifat mekanik yaitu kuat lentur dan keteguhan patah eternit berbahan dasar abu cangkang sawit. Penelitian ini dilakukan karena masi rendahnya mutu eternit berbahan campuran abu cangkang sawit dari bolier khususnya sifat mekanik dibandingkan dengan kontrol. Metode penelitian yang digunakan adalah dengan variasi tekanan cetak dan penambahan conplast. Hasil uji diperoleh bahwa kuat lentur tertinggi sebesar 90875,94 Kg/cm2 dan keteguhan patah sebesar 61,16 Kg/cm2, yang dicetak pada tekanan 60 g/cm3 dan penambahan conplast 25% dengan komposisi  abu cangkang sawit 40 %: kapur 40 % : semen 15 %: serat 5 % dan air 300 mL.Kata Kunci :  Abu cangkang sawit, conplast, kuat lentur, keteguhan patah.


2018 ◽  
Vol 28 (4) ◽  
pp. 1329-1333
Author(s):  
Miodrag Šmelcerović

The protection of the environment and people’s health from negative influences of the pollution of air as a medium of the environment requires constant observing of the air quality in accordance with international standards, the analysis of emission and imission of polluting matters in the air, and their connection with the sources of pollution. Having in mind the series of laws and delegated legislations which define the field of air pollution, it is necessary to closely observe these long-term processes, discovering cause-and-effect relationships between the activities of anthropogenic sources of emission of polluting matters and the level of air degradation. The relevant evaluation of the air quality of a certain area can be conducted if the level of concentration of polluting matters characteristic for the pollution sources of this area is observed in a longer period of time. The data obtained by the observation of the air pollution are the basis for creation of the recovery program of a certain area. Vranje is a town in South Serbia where there is a bigger number of anthropogenic pollution sources that can significantly diminish the air quality. The cause-and-effect relationship of the anthropogenic sources of pollution is conducted related to the analysis of systematized data which are in the relevant data base of the authorized institution The Institute of Public Health Vranje, for the time period between the year of 2012. and 2017. By the analysis of data of imission concentrations of typical polluting matters, the dominant polluting matters were determined on the territory of the town of Vranje, the ones that are the causers of the biggest air pollution and the risk for people’s health. Analysis of the concentration of soot, sulfur dioxide and nitrogen oxides indicates their presence in the air of Vranje town area in concentrations that do not exceed the permitted limit values annually. The greatest pollution is caused by the soot content in the air, especially in the winter period when the highest number of days with the values above the limit was registered. By perceiving the influence of natural and anthropogenic factors, it is clear that the concentration of polluting matters can be decreased only by establishing control over anthropogenic sources of pollution, and thus it can be contributed to the improvement of the air quality of this urban environment.


Coatings ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 354
Author(s):  
Tim Tofan ◽  
Rimantas Stonkus ◽  
Raimondas Jasevičius

The aim of this research is to investigate related effect of dyeability to linen textiles related to different printing parameters. The study investigated the change in color characteristics when printing on linen fabrics with an inkjet MIMAKI Tx400-1800D printer with pigmented TP 250 inks. The dependence of color reproduction on linen fabrics on the number of print head passes, number of ink layers to be coated, linen fabric density, and different types of linen fabric was investigated. All this affects the quality of print and its mechanical properties. The change in color characteristics on different types of linen fabrics was determined experimentally. We determine at which print settings the most accurate color reproduction can be achieved on different linen fabrics. The difference between the highest and the lowest possible number of head passages was investigated. The possibilities of reproducing different linen fabric colors were determined.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4329
Author(s):  
Atif H. Asghar ◽  
Ahmed Rida Galaly

An experimental study was performed on a low-density plasma discharge using two different configurations of the plasma cell cathode, namely, the one mesh system electrodes (OMSE) and the one mesh and three system electrodes (OMTSE), to determine the electrical characteristics of the plasma such as current–voltage characteristics, breakdown voltage (VB), Paschen curves, current density (J), cathode fall thickness (dc), and electron density of the treated sample. The influence of the electrical characteristics of the plasma fluid in the cathode fall region for different cathode configuration cells (OMSE and OMTSE) on the performance quality of a surgical gown was studied to determine surface modification, treatment efficiency, exposure time, wettability property, and mechanical properties. Over a very short exposure time, the treatment efficiency for the surgical gown surface of plasma over the mesh cathode at a distance equivalent to the cathode fall distance dc values of the OMTSE and for OMSE reached a maximum. The wettability property decreased from 90 to 40% for OMTSE over a 180 s exposure time and decreased from 90 to 10% for OMSE over a 160 s exposure time. The mechanisms of each stage of surgical gown treatment by plasma are described. In this study, the mechanical properties of the untreated and treated surgical gown samples such as the tensile strength and elongation percentage, ultimate tensile strength, yield strength, strain hardening, resilience, toughness, and fracture (breaking) point were studied. Plasma had a more positive effect on the mechanical properties of the OMSE reactor than those of the OMTSE reactor.


Plants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 847
Author(s):  
Anita Zapałowska ◽  
Natalia Matłok ◽  
Miłosz Zardzewiały ◽  
Tomasz Piechowiak ◽  
Maciej Balawejder

The aim of this research was to show the effect of the ozonation process on the quality of sea buckthorn (Hippophae rhamnoides L.). The quality of the ozonated berries of sea buckthorn was assessed. Prior to and after the ozone treatment, a number of parameters, including the mechanical properties, moisture content, microbial load, content of bioactive compounds, and composition of volatile compounds, were determined. The influence of the ozonation process on the composition of volatile compounds and mechanical properties was demonstrated. The ozonation had negligible impact on the weight and moisture of the samples immediately following the treatment. Significant differences in water content were recorded after 7 days of storage. It was shown that the highest dose of ozone (concentration and process time) amounting to 100 ppm for 30 min significantly reduced the water loss. The microbiological analyses showed the effect of ozone on the total count of aerobic bacteria, yeast, and mold. The applied process conditions resulted in the reduction of the number of aerobic bacteria colonies by 3 log cfu g−1 compared to the control (non-ozonated) sample, whereas the number of yeast and mold colonies decreased by 1 log cfu g−1 after the application of 100 ppm ozone gas for 30 min. As a consequence, ozone treatment enhanced the plant quality and extended plant’s storage life.


Sign in / Sign up

Export Citation Format

Share Document