scholarly journals Experimental Investigation of the influence of the Cutting Conditions on the Surface Roughness in Hole turning the SCM400 Steel

2019 ◽  
Vol 4 (8) ◽  
pp. 11-14
Author(s):  
Nguyen Hong Son ◽  
Hoang Xuan Thinh ◽  
Nhu-Tung Nguyen ◽  
Do Duc Trung

This paper presented the experimental results about investigation of the influence of the cutting conditions on the surface roughness when hole turning the SCM400 steel. Three cutting paramesters that have mentioned in this study included cutting speed, axial feed rate, and cutting depth. The experimental design was chosen following the orthogonal matrix and added the center experiment points. The analyzed results show that the axial feed rate has the greatest degree of impact on the surface roughness. And, the second and third factors have negligible effect on the surface roughness that are cutting speed and cutting depth, respectively. These results will guide the determination of the cutting conditions in order to machining the part surface with roughness that was ensured the setting requirement. Finally, the directions for further research were also mentioned in this paper.

2011 ◽  
Vol 110-116 ◽  
pp. 3563-3569 ◽  
Author(s):  
Bandit Suksawat

This paper aims to investigate cutting conditions influence on main cutting force and surface roughness based on considered chip form types in cast nylon turning operation with single-point high speed steel cutting tool. The 75 experiments were performed by average of three levels of cutting speed, five levels of cutting depth and five levels of feed rate. The results reveal that main cutting forces were increased by an increasing of cutting speed and cutting depth for all obtained chip form types for all chip form types. The surface roughness is affected by increasing of feed rate and reduction of cutting speed for 2.3 Snarled and 4.3 Snarled chip form types. The statistical path-coefficient analysis results are shown that the main cutting force affected by cutting speed, depth of cut and feed rate with total causal effect value of 0.5537, 0.4785 and 0.1718, respectively. The surface roughness is influenced by feed rate, cutting speed and depth of cut with 0.8400, -0.2419 and-0.0711 of total causal effect value, respectively. These results are useful to perform varying cutting conditions for high quality of workpiece in cast nylon turning by control the chip form type.


Author(s):  
Sabi Sabev ◽  
Plamen Kasabov

this study is focusing on the experimental investigation of the effects of cutting parameters on surface roughness during hole boring of 8062 aluminums with anti-vibration boring bar on lathe. Several experiments were conducted with different cutting conditions. Based on the results and using “Minitab 19” software, a mathematic model was made to predict the surface quality in connection with different cutting conditions. Finally, an experiment analysis was carried out to verify the analytical results. 


2018 ◽  
Vol 142 ◽  
pp. 03002
Author(s):  
Yunhai Jia ◽  
Lixin Zhu

Ti-6Al-4V components are the most widely used titanium alloy products not only in the aerospace industry, but also for bio-medical applications. The machine-ability of titanium alloys is impaired by their high temperature chemical reactivity, low thermal conductivity and low modulus of elasticity. Polycrystalline cubic boron nitride represents a substitute tool material for turning titanium alloys due to its high hardness, wear resistance, thermal stability and hot red hardness. For determination of suitable cutting parameters in dry turning Ti-6AL-4V alloy by Polycrystalline cubic boron nitride cutting tools, the samples, 300mm in length and 100mm in diameter, were dry machined in a lathe. The turning suitable parameters, such as cutting speed, feed rate and cut depth were determined according to workpieces surface roughness and tools flank wear based on orthogonal experimental design. The experiment showed that the cutting speed in the range of 160~180 m/min, the feed rate is 0.15 mm/rev and the depth of cut is 0.20mm, ideal workpiece surface roughness and little cutting tools flank wear can be obtained.


2015 ◽  
Vol 727-728 ◽  
pp. 354-357
Author(s):  
Mei Xia Yuan ◽  
Xi Bin Wang ◽  
Li Jiao ◽  
Yan Li

Micro-milling orthogonal experiment of micro plane was done in mesoscale. Probability statistics and multiple regression principle were used to establish the surface roughness prediction model about cutting speed, feed rate and cutting depth, and the significant test of regression equation was done. On the basis of successfully building the prediction model of surface roughness, the diagram of surface roughness and cutting parameters was intuitively built, and then the effect of the cutting speed, feed rate and cutting depth on the small structure surface roughness was obtained.


2011 ◽  
Vol 228-229 ◽  
pp. 458-463
Author(s):  
Ming Hai Wang ◽  
Hu Jun Wang ◽  
Zhong Hai Liu

Isotropic pyrolyric graphite (IPG) is a new kind of brittle material, it not only has the general advantages of ordinal carbonaceous materials such as high temperature resistance, lubrication and abrasion resistance, but also has the advantages of impermeability and machinability that carbon/carbon composite doesn’t have. So it can be used for sealing the aeronautics and astronautics engines turbine shaft and the ethylene high-temperature equipment. The mechanism of this material removal during the precision cutting was analyzed by using the theory of strain gradient. The critical cutting thickness of IPG was calculated for the first time. Furthermore, the cutting process parameters such as cutting depth and feed rate which corresponding to the scale of brittle-ductile transition deformation of IPG was calculated. The prediction model of surface roughness in precision cutting of IPG was developed based on the Genetic algorithm. Using the surface roughness prediction model, the study investigates the influence of the cutting speed, the feed rate and the cutting depth on surface roughness in precision turning process was researched.


Author(s):  
Xiao-fen Liu ◽  
Wen-hu Wang ◽  
Rui-song Jiang ◽  
Yi-feng Xiong ◽  
Kun-yang Lin ◽  
...  

Abstract The current state of surface roughness focuses on the 2D roughness. However, there are shortcomings in evaluating surface quality of particle reinforced metal matrix composites using 2D roughness due to the fact that the measuring direction has a vital impact on the 2D roughness value. It is therefore of great importance and significance to develop a proper criterion for measuring and evaluating the surface roughness of cutting particle reinforced metal matrix composites. In this paper, an experimental investigation was performed on the effect of cutting parameters on the surface roughness in cutting in-situ TiB2/7050Al MMCs. The 2D roughness Ra, 3D roughness Sa and Sq were comparatively studied for evaluating the machined surface quality of in-situ TiB2/7050Al MMCs. The influence of cutting parameters on the surface roughness was also analyzed. The big difference between roughness Ra measured along cutting and feed directions showed the great impact of measuring direction. Besides, surface defects such as pits, grooves, protuberances and voids were observed, which would influence 2D roughness value greatly, indicating that 3D roughness was more suitable for evaluating surface quality of cutting in-situ TiB2/7050Al MMCs. The cutting depth and feed rate were found to have the highest influence on 3D roughness while the effect of cutting speed was minimal. With increasing feed rate, cutting depth or width, the 3D roughness increased accordingly. But it decreased as cutting speed increased.


2010 ◽  
Vol 102-104 ◽  
pp. 653-657 ◽  
Author(s):  
Xu Hong Guo ◽  
Li Jun Teng ◽  
Wei Wang ◽  
Ting Ting Chen

In recent years, the machinability of magnesium alloy is concerned more and more by the public. In this paper, a study on the cutting properties of magnesium alloy AZ91D when dry turning with kentanium cutting tools is presented. It shows the cutting force measured by a data acquisition system which is made up of Kistler9257B piezoelectric crystal sensor dynamometer, Kistler5070A10100 charge amplifier and computer. The effect of cutting parameters on cutting force was studied, and the experimental formula was built. The tool wear and chip characteristics were observed with KYKY-EM3200 electron scanning microscope and EDAX PV9900 alpha ray spectrometer, while the surface roughness of the workpiece was measured with 2205 profilometer. Results showed that the cutting depth was the main influence factor on cutting force, followed by feed rate and cutting speed . The main form of tool wear showed to be diffusive wear and adhesive wear. The feed rate had the main influence on chip form and the workpiece surface roughness, cutting speed was less effective, the cutting depth was the least.


2013 ◽  
Vol 837 ◽  
pp. 128-134 ◽  
Author(s):  
Gheorghe Mustea ◽  
Gheorghe Brabie

The use of magnesium alloys in construction of different components of the mechanical systems (such: cars, aerospace vehicles, medical equipment etc.) is very efficient not only because it leads to reduction of the systems weight but also because it leads to reduction or elimination of the environment polluting and to reduction of the energy consumption. Generally, the main factors that influence the quality of the machined surfaces are as follows: cutting parameters, material properties, geometry of the tools, cooling liquids and lubricants, physical and mechanical properties of the subsurface layers etc. Among the above mentioned factors, cutting parameters are the factors that strongly influence the quality of the machined surfaces. The present paper analysis the results of the experimental investigation performed to determine the influence of cutting parameters (cutting speed, feed rate and cutting depth) on the surface quality machined by turning the AZ61 magnesium alloy. The main characteristics of the machined surface quality analyzed in experimental investigation were the surface roughness and hardness. The main conclusions resulted from the results analysis were as follows: the decrease of the feed rate led to surface roughness decrease and hardness increase; the increase of the cutting speed also led to an improved surface quality.


2016 ◽  
Vol 862 ◽  
pp. 270-277 ◽  
Author(s):  
János Kundrák ◽  
Gergely Szabó ◽  
Angelos P. Markopoulos

The impact of cutting speeds and feed rates on the components of the forces exerted on a 16MnCr5 steel workpiece is experimentally measured, when turning with PCBN tool. The cutting speed range of the tests varies between 90 to 240 m/min while the feed rate is between 0.05 and 0.25 mm/rev for each cutting speed, allowing for the determination of the influence of cutting conditions on forces. Additionally, finite elements models for the simulation of the aforementioned experiments are provided. The proposed models exhibit good correlation of their results on cutting forces and chip formation with the measurements and observations of the experiments. Furthermore, the models can provide a wide range of additional parameters, i.e. plastic strain rates and temperatures within the workpiece. Results of the presented analysis can be used for an efficient process planning for the turning of steels under cutting conditions used in the industry.


Materials ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 5343
Author(s):  
Basem M. A. Abdo ◽  
Hisham Alkhalefah ◽  
Khaja Moiduddin ◽  
Mustufa Haider Abidi

The machining of ceramic materials is challenging and often impossible to realize with conventional machining tools. In various manufacturing applications, rotary ultrasonic milling (RUM) shows strengths, in particular for the development of high-quality micro-features in ceramic materials. The main variables that influence the performance and price of the product are surface roughness, edge chipping (EC), and material removal rate (MRR) during the processing of ceramics. RUM has been considered in this research for the milling of micro-pockets in bioceramic alumina (Al2O3). Response surface methodology in the context of a central composite design (CCD) is being used to plan the experiments. The impacts of important RUM input parameters concerning cutting speed, feed rate, depth of cut, frequency, and amplitude have been explored on the surface roughness in terms of arithmetic mean value (Ra), the EC, and the MRR of the machined pockets. The main effect and the interaction effect of the implemented RUM parameters show that by providing a lower feed rate and cutting depth levels and elevated frequency and cutting speed, the Ra and the EC can be minimized. At greater levels of feed rate and cutting depth, higher MRR can be obtained. The influence of RUM input parameters on the surface morphology was also recorded and analyzed using scanning electron microscopic (SEM) images. The study of the energy dispersive spectroscopy (EDS) shows that there is no modification in the alumina bioceramic material. Additionally, a multi-response optimization method has been applied by employing a desirability approach with the core objectives of minimizing the EC and Ra and maximizing the MRR of the milled pockets. The obtained experimental values for Ra, EC, and MRR at an optimized parametric setting were 0.301 µm, 12.45 µm, and 0.873 mm3/min respectively with a combined desirability index value of 0.73.


Sign in / Sign up

Export Citation Format

Share Document