scholarly journals Effect of Water Injection into Aero-derivative Gas Turbine Combustors on NOx Reduction

2020 ◽  
Vol 5 (11) ◽  
pp. 1357-1359
Author(s):  
Roupa Agbadede ◽  
Biweri Kainga

Oxides of Nitrogen (NOx) generated from gas turbines causes enormous harm to human health and the environment. As a result, different methods have been employed to reduce NOx produced from gas turbine combustion process. One of such technique is the injection of water or steam into the combustion chamber to reduce the flame temperature. A twin shaft aero-derivative gas turbine was modelled and simulated using GASTURB simulation software. The engine was modelled after the GE LM2500 class of gas turbine engines. Water injection into the gas turbine combustor was simulated by implanting water-to-fuel ratios of 0 to 0.8, in an increasing order of 0.2. The results show that when water-to-fuel ratio was increased, the Nox severity index reduced. While heat rate and fuel flow increased with water-to-fuel ratio (injection flow rate).

Author(s):  
K. K. Botros ◽  
M. J. de Boer ◽  
G. Kibrya

A one dimensional model based on fundamental principles of gas turbine thermodynamics and combustion processes was constructed to quantify the principle of exhaust gas recirculation (EGR) for NOx reduction. The model utilizes the commercial process simulation software ASPEN PLUS®. Employing a set of 8 reactions including the Zeldovich mechanism, the model predicted thermal NOx formation as function of amount of recirculation and the degree of recirculate cooling. Results show that addition of sufficient quantities of uncooled recirculate to the inlet air (i.e. EGR>∼4%) could significantly decrease NOx emissions but at a cost of lower thermal efficiency and specific work. Cooling the recirculate also reduced NOx at lower quantities of recirculation. This has also the benefit of decreasing losses in the thermal efficiency and in the specific work output. Comparison of a ‘rubber’ and ‘non-rubber’ gas turbine confirmed that residence time is one important factor in NOx formation.


Author(s):  
A. H. Lefebvre

The attainment of very low pollutant emissions, in particular oxides of nitrogen (NOx), from gas turbines is not only of considerable environmental concern but has also become an area of increasing competitiveness between the different engine manufacturers. For stationary engines, the attainment of ultra-low NOx has become the foremost marketing issue. This paper is devoted primarily to current and emerging technologies in the development of ultra-low emissions combustors for application to aircraft and stationary engines. Short descriptions of the basic design features of conventional gas turbine combustors and the methods of fuel injection now in widespread use are followed by a review of fuel spray characteristics and recent developments in the measurement and modeling of these characteristics. The main gas turbine generated pollutants and their mechanisms of formation are described, along with related environmental risks and various issues concerning emissions regulations and recently-enacted legislation for limiting the pollutant levels emitted by both aircraft and stationary engines. The impact of these emissions regulations on combustor and engine design are discussed first in relation to conventional combustors and then in the context of variable-geometry and staged combustors. Both these concepts are founded on emissions reduction by control of flame temperature. Basic approaches to the design of “dry” low NOx and ultra-low NOx combustors are reviewed. At the present time lean, premix, prevaporize, combustion appears to be the only technology available for achieving ultra-low NOx emissions from practical combustors. This concept is discussed in some detail, along with its inherent problems of autoignition, flashback, and acoustic resonance. Attention is also given to alternative methods of achieving ultra-low NOx emissions, notably the rich-bum, quick-quench, lean-burn and catalytic combustors. These concepts are now being actively developed, despite the formidable problems they present in terms of mixing and durability. The final section reviews the various correlations which are now being used to predict the exhaust gas concentrations of the main gaseous pollutant emissions from gas turbine engines. Comprehensive numerical methods have not yet completely displaced these semi-empirical correlations but are nevertheless providing useful insight into the interactions of swirling and recirculating flows with fuel sprays, as well as guidance to the combustion engineer during the design and development stages. Throughout the paper emphasis is placed on the important and sometimes pivotal role played by the fuel preparation process in the reduction of pollutant emissions from gas turbines.


1995 ◽  
Vol 117 (4) ◽  
pp. 617-654 ◽  
Author(s):  
A. H. Lefebvre

The attainment of very low pollutant emissions, in particular oxides of nitrogen (NOx), from gas turbines is not only of considerable environmental concern but has also become an area of increasing competitiveness between the different engine manufacturers. For stationary engines, the attainment of ultralow NOx has become the foremost marketing issue. This paper is devoted primarily to current and emerging technologies in the development of ultralow emissions combustors for application to aircraft and stationary engines. Short descriptions of the basic design features of conventional gas turbine combustors and the methods of fuel injection now in widespread use are followed by a review of fuel spray characteristics and recent developments in the measurement and modeling of these characteristics. The main gas-turbine-generated pollutants and their mechanisms of formation are described, along with related environmental risks and various issues concerning emissions regulations and recently enacted legislation for limiting the pollutant levels emitted by both aircraft and stationary engines. The impacts of these emissions regulations on combustor and engine design are discussed first in relation to conventional combustors and then in the context of variable-geometry and staged combustors. Both these concepts are founded on emissions reduction by control of flame temperature. Basic approaches to the design of “dry” low-NOx and ultralow-NOx combustors are reviewed. At the present time lean, premix, prevaporize combustion appears to be the only technology available for achieving ultralow NOx emissions from practical combustors. This concept is discussed in some detail, along with its inherent problems of autoignition, flashback, and acoustic resonance. Attention is also given to alternative methods of achieving ultralow NOx emissions, notably the rich-burn, quick-quench, lean-burn, and catalytic combustors. These concepts are now being actively developed, despite the formidable problems they present in terms of mixing and durability. The final section reviews the various correlations now being used to predict the exhaust gas concentrations of the main gaseous pollutant emissions from gas turbine engines. Comprehensive numerical methods have not yet completely displaced these semi-empirical correlations but are nevertheless providing useful insight into the interactions of swirling and recirculating flows with fuel sprays, as well as guidance to the combustion engineer during the design and development stages. Throughout the paper emphasis is placed on the important and sometimes pivotal role played by the fuel preparation process in the reduction of pollutant emissions from gas turbines.


1972 ◽  
Vol 94 (4) ◽  
pp. 271-278
Author(s):  
P. P. Singh ◽  
W. E. Young ◽  
M. J. Ambrose

Results of an investigation into the levels of oxides of nitrogen in Westinghouse gas turbine exhausts are presented. Various methods of controlling the amounts of these emissions were considered. The oxides of nitrogen were reduced most effectively by lowering the maximum flame temperature. This was done by either leaning the primary zone of the combustor, by water injection in the primary zone, or by using vitiated combustion air. Reductions in NOx levels to 15 percent of original values were achieved.


2014 ◽  
Vol 16 (2-3) ◽  
pp. 159
Author(s):  
M. Streichsbier ◽  
R.W. Dibble ◽  
R.A. Perry

<p>A novel SNC technique to remove oxides of nitrogen (NO<sub>x</sub>) from stationary gas turbine exhaust has been investigated and applied. The technique employs the use of cyanuric acid (CYA), a non-toxic, dry powder, combined with the injection of auxiliary turbine fuel and recirculation. During the initial investigation, exhaust, generated by a 150 kW gas turbine, was treated in an insulated recirculation reactor, with a mean residence time of 0.65 to 0.71 seconds and a pressure drop of 660 Pa. In the reactor, autoignition of injected auxiliary gas turbine fuel raises the flue gas temperature to between 700 and 800 ºC. CYA slurry is injected. Temperature rise and NOx reduction occur simultaneously. Load following has been achieved. At all temperatures, significant NO<sub>x</sub> reduction from initial  concentrations of 106 to 124 ppm to as low as 18 ppm at 15% O<sub>2</sub> have been observed. However, the process generates N<sub>2</sub>O emissions, which vary from 45 to 163 ppm, increasing with increasing CYA/NOx ratio. The ratio of N<sub>2</sub>O formed to NO removed was found to be between 1 to 1.5 to 1. The performance of CYA ((HNCO)<sub>3</sub>) is compared to that of ammonia (NH<sub>3</sub>) and urea ((NH<sub>2</sub>)<sub>2</sub>CO). A numerical model, which combines a detailed chemical kinetic mechanism with recirculation, has been developed. The model captures all observed trends well and is an invaluable guide to improved understanding of the interactive NO<sub>x</sub> removal process. The process was then successfully scaled up and applied to a variety of industrial 3.7 MW gas turbines and similarly significant NO<sub>x</sub> reduction has been achieved.</p>


Author(s):  
A. J. Kaufman ◽  
David Moen

Older gas turbines can meet strict, present day emission standards by the addition of such emission reducing technologies as water injection, reduced emission combustion components, CO reduction catalyst and selective catalytic NOx reduction (SCR). The following is a description of a gas turbine peaking plant using SCR and a CO catalyst reduction system to allow 30 year old gas turbines to attain very low levels of NOx and CO emissions. Installation, startup and day-to-day operation are described, as well as operation with anhydrous ammonia.


Energies ◽  
2018 ◽  
Vol 11 (12) ◽  
pp. 3521 ◽  
Author(s):  
Panagiotis Stathopoulos

Conventional gas turbines are approaching their efficiency limits and performance gains are becoming increasingly difficult to achieve. Pressure Gain Combustion (PGC) has emerged as a very promising technology in this respect, due to the higher thermal efficiency of the respective ideal gas turbine thermodynamic cycles. Up to date, only very simplified models of open cycle gas turbines with pressure gain combustion have been considered. However, the integration of a fundamentally different combustion technology will be inherently connected with additional losses. Entropy generation in the combustion process, combustor inlet pressure loss (a central issue for pressure gain combustors), and the impact of PGC on the secondary air system (especially blade cooling) are all very important parameters that have been neglected. The current work uses the Humphrey cycle in an attempt to address all these issues in order to provide gas turbine component designers with benchmark efficiency values for individual components of gas turbines with PGC. The analysis concludes with some recommendations for the best strategy to integrate turbine expanders with PGC combustors. This is done from a purely thermodynamic point of view, again with the goal to deliver design benchmark values for a more realistic interpretation of the cycle.


Author(s):  
Yonatan Cadavid ◽  
Andres Amell ◽  
Juan Alzate ◽  
Gerjan Bermejo ◽  
Gustavo A. Ebratt

The wet compressor (WC) has become a reliable way to reduce gas emissions and increase gas turbine efficiency. However, fuel source diversification in the short and medium terms presents a challenge for gas turbine operators to know how the WC will respond to changes in fuel composition. For this study, we assessed the operational data of two thermal power generators, with outputs of 610 MW and 300 MW, in Colombia. The purpose was to determine the maximum amount of water that can be added into a gas turbine with a WC system, as well as how the NOx/CO emissions vary due to changes in fuel composition. The combustion properties of different gaseous hydrocarbon mixtures at wet conditions did not vary significantly from each other—except for the laminar burning velocity. It was found that the fuel/air equivalence ratio in the turbine reduced with lower CH4 content in the fuel. Less water can be added to the turbine with leaner combustion; the water/fuel ratio was decreased over the range of 1.4–0.4 for the studied case. The limit is mainly due to a reduction in flame temperature and major risk of lean blowout (LBO) or dynamic instabilities. A hybrid reaction mechanism was created from GRI-MECH 3.0 and NGIII to model hydrocarbons up to C5 with NOx formation. The model was validated with experimental results published previously in literature. Finally, the effect of atmospheric water in the premixed combustion was analyzed and explained.


1974 ◽  
Vol 96 (1) ◽  
pp. 32-48 ◽  
Author(s):  
W. R. Wade ◽  
P. I. Shen ◽  
C. W. Owens ◽  
A. F. McLean

This first part, of a two part paper, reviews the NOx emission problem of the regenerative gas turbine engine for automotive application. It discusses the problem of fuel droplet burning, which causes heterogenous combustion with resulting high flame temperatures and high levels of oxides of nitrogen. The paper proposes means to achieve homogeneous combustion and shows that, even with this approach, flame temperatures need to be closely controlled to effect a compromise between NOx, CO, and HC emissions in order to meet the stringent numerical levels of emissions specified by the Federal standards for 1976 and subsequent model year automobiles. The paper shows that combustor inlet temperature of a homogeneous system has little effect, theoretically, on computed NOx emissions expressed as grams per mile, thereby strengthening the case for the regenerative turbine engine. A design concept for homogeneous combustion with controlled flame temperature is discussed.


Author(s):  
Daniel Moëll ◽  
Daniel Lörstad ◽  
Annika Lindholm ◽  
David Christensen ◽  
Xue-Song Bai

DLE (Dry Low Emission) technology is widely used in land based gas turbines due to the increasing demands on low NOx levels. One of the key aspects in DLE combustion is achieving a good fuel and air mixing where the desired flame temperature is achieved without too high levels of combustion instabilities. To experimentally study fuel and air mixing it is convenient to use water along with a tracer instead of air and fuel. In this study fuel and air mixing and flow field inside an industrial gas turbine burner fitted to a water rig has been studied experimentally and numerically. The Reynolds number is approximately 75000 and the amount of fuel tracer is scaled to represent real engine conditions. The fuel concentration in the rig is experimentally visualized using a fluorescing dye in the water passing through the fuel system of the burner and recorded using a laser along with a CCD (Charge Couple Device) camera. The flow and concentration field in the burner is numerically studied using both the scale resolving SAS (Scale Adaptive Simulation) method and the LES (Large Eddy Simulation) method as well as using a traditional two equation URANS (Unsteady Reynolds Average Navier Stokes) approach. The aim of this study is to explore the differences and similarities between the URANS, SAS and LES models when applied to industrial geometries as well as their capabilities to accurately predict relevant features of an industrial burner such as concentration and velocity profiles. Both steady and unsteady RANS along with a standard two equation turbulence model fail to accurately predict the concentration field within the burner, instead they predict a concentration field with too sharp gradients, regions with almost no fuel tracer as well as regions with far too high concentration of the fuel tracer. The SAS and LES approach both predict a more smooth time averaged concentration field with the main difference that the tracer profile predicted by the LES has smoother gradients as compared to the tracer profile predicted by the SAS. The concentration predictions by the SAS model is in reasonable agreement with the measured concentration fields while the agreement for the LES model is excellent. The LES shows stronger fluctuations in velocity over time as compared to both URANS and SAS which is due to the reduced amounts of eddy viscosity in the LES model as compared to both URANS and SAS. This study shows that numerical methods are capable of predicting both velocity and concentration in a gas turbine burner. It is clear that both time and scale resolved methods are required to accurately capture the flow features of this and probably most industrial DLE gas turbine burners.


Sign in / Sign up

Export Citation Format

Share Document