scholarly journals EVALUASI PERBANDINGAN SIMPANGAN STRUKTUR SRPM AKIBAT PERMODELAN STRUKTUR YANG BERBEDA

2018 ◽  
Vol 4 (1) ◽  
Author(s):  
Tondi Amirsyah Putera ◽  
Ade Faisal ◽  
Suprayetno .

Struktur bangunan bertingkat rawan terhadap gaya lateral, terutama akibat gaya yang ditimbulkan oleh gempa. Indonesia juga termasuk ke dalam wilayah yang memiliki instensitas terjadi gempa yang tinggi. Dalam menghitung struktur bangunan bertingkat ada 2 cara, yakni dengan sistem rangka pemikul momen (SRPM) dan kombinasi SRPM dengan shear wall. Pada proses perencanaan umumnya dinding geser dimodelkan sebagai element solid pada program komputer. Pemakaian element solid ini akan memakan waktu analisa seiring dengan semakin bertambahnya tinggi bangunan. Dinding geser juga dapat dimodelkan dengan element garis (line). Untuk itu studi ini bertujuan membandingkan hasil yang diperoleh bila dinding geser dimodelkan sebagai element solid dan element garis. Pada studi ini terdapat 3 pemodelan struktur, yaitu 1 model strktur tanpa dinding geser, dan 2 model truktur dengan dinding geser (model dinding geser solid element dan model dinding geser  line element). Semua input beban, tingkat kekakuan dan dimensi struktur adalah sama, yang berbeda hanyalah model shear wall yang digunakan. Gedung ini memiliki tingggi 40 meter (10 lantai), tinggi tiap lantai 4 meter. Berdasarkan hasil analisis tersebut diperoleh bahwa terjadi perbedaan perioda getar, simpangan, gaya geser dasar dan gaya-gaya dalam karena pemodelan sistem struktur penahan gaya geser yang berbeda-beda.  Kata Kunci : Dinding Geser, Pemodelan Struktur, Simpangan   ABSTRACT The structure of multi-storey buildings are vulnerable to lateral force, especially due to the force created by the earthquake. Indonesia is also included in the territory which has instensitas an earthquake is high. In calculating the structure of multi-storey buildings there are two ways, namely as moment resisting frame system (MRF) and combination of MRF with shear wall. The development of science and technology has given rise to one of the solutions to improve the performance of high-level structure, namely the installation of shear walls to add structural rigidity and absorbs shear forces along with the high structure. The goal of this studi is to determine the difference of some parameters made of a combination of structural design of the building with MRF and MRF with shear wall. In this study, there are 3 modeling of structures, namely 1 models structure without shear walls, and two models of structures are at the shear wall (solid element model of shear walls and shear wall model line element). All input load, stiffness and dimensional structure is the same, just different shear wall models used. This building has 40 meters (10 floors) of height, which is the height of each floor 4 meters. The results of the analysis indicates that the significant deviation occurs due to system modeling of shear wall is different. Keywords: Shear Wall, Structure Modelling, Displacement

2010 ◽  
Vol 163-167 ◽  
pp. 1736-1743
Author(s):  
Jun Han ◽  
Ying Min Li ◽  
Wei Xian Chen ◽  
Wei Jiang ◽  
Wei Zhao

Reinforced concrete frame-shear wall structure is a double resistance to lateral force system, in which the frames and shear walls work cooperatively and the distributive rule of the earthquake force varies with different earthquake actions. To ensure the frames bear the increasing earthquake shear force and play a role of second defense line due to the internal force re-distribution after the stiffness degradation of shear walls, the elastic design earthquake shear force of the frames should be adjusted. However the adjustment measures applied in Chinese code are proposed according to the design experiences of engineers and lack of the theoretical and computational analytical basis. Moreover, there is a dispute about ignoring the rule of the shear force redistribution along storey or not, it is necessary to further evaluate the rationality of the measures in the code. In this paper, based on a 3-D precise nonlinear frame-shear wall structure analysis model, the re-distributive rule of the internal force under strong earthquake was studied and the adjustment measures of earthquake force in the frames were checked. Finally, some design suggestions were proposed.


2019 ◽  
Vol 35 (1) ◽  
pp. 383-404 ◽  
Author(s):  
Mayssa Dabaghi ◽  
George Saad ◽  
Naser Allhassania

This paper examines the behavior of reinforced concrete shear wall buildings subjected to strong earthquake ground motions, with a focus on collapse performance. The effect of varying the number of stories, shear wall and boundary element dimensions, and reinforcement detailing on the seismic collapse fragility is investigated. The buildings are seismically designed based on the ASCE 7-10 and ACI 318-14 codes with additional provisions for capacity design and dynamic amplification. The shear walls are modeled using the shear-flexure interaction multiple vertical line element model with nonlinear hysteretic material models. Incremental dynamic analysis is performed to simulate the structural collapse of the two-dimensional building models subjected to the FEMA-P695 set of far field recorded ground motions scaled to increasing intensity values. For each building, a lognormal collapse fragility curve is fitted to the results. A collapse assessment of the studied buildings shows how the seismic performance is significantly affected by the varied parameters.


Author(s):  
V. V. Bertero ◽  
S. A. Mahin ◽  
J. Hollings

The 1972 Managua, Nicaragua earthquake was a severe test of modern earthquake resistant design and construction procedures. This paper examines the behaviour of the 18-story reinforced concrete Banco de America building which performed exceptionally well during the earthquake. Although the building suffered some structural and non-structural damage, its large, symmetrically located, coupled shear walls limited this damage to levels significantly below those observed in
more flexible structures. Several linear elastic and nonlinear analyses were conducted to evaluate the building's behaviour and determine the probable cause of the observed damage. Both static and dynamic elastic analyses were used to determine the members that would have failed and the consequence of these failures on the subsequent dynamic response. The effects of biaxial ground motions, foundation flexibility and ground motion characteristics were considered in the elastic investigations. To get a better idea of the dynamic behaviour of the principal lateral force resisting system considered in the design, nonlinear analyses were performed for the coupled shear wall cores as constructed and for the idealized case where the coupling girders were assumed to have unlimited ductility. Even code type static analyses satisfactorily identified the damaged regions. The principal design deficiency was the low shear strength of the coupling girders. However, the nonlinear results indicated that had these girders been able to develop their flexural capacity they would have suffered substantial numbers of reversals and the shear walls would have been subjected to undesirable states of stress. The analytical results as well as the building’s performance demonstrated that buildings with coupled shear walls combined with moment resisting frames offer excellent protection against seismic excitations, minimizing nonstructural damage while providing several lines of defense in the event of localized failure. Design and repair recommendations are offered.


2014 ◽  
Vol 580-583 ◽  
pp. 1696-1699
Author(s):  
Qiao Jin ◽  
Wan Nan Guo ◽  
Wei Jian Zhao ◽  
Bin Zhang ◽  
De Peng Zhang

Aiming at the horizontal connection joint of the precast shear wall structure, this paper presents a new-type horizontal wall-to-wall connection. Based on the ABAQUS finite element analysis platform, an accurate finite element model of shear connection joints was built. By quasi-static numerical tests, the seismic behavior of the proposed connection of the precast shear wall system was analysed and compared with that of the traditional cast-in-place connection. The numerical results show that the seismic performance of the presented connection, such as deformability and energy-dissipation capacity, is slightly lower than that of its cast-in-place counterpart.


2017 ◽  
Vol 21 (9) ◽  
pp. 1327-1348
Author(s):  
Cong Chen ◽  
Renjie Xiao ◽  
Xilin Lu ◽  
Yun Chen

Structure with replaceable devices is a type of earthquake resilient structure developed to restore the structure immediately after strong earthquakes. Current researches focus on one type of the replaceable device located in the structural part that is most likely to be damaged; however, plastic deformation would not be limited in a specific part but expand to other parts. To concentrate possible damage in shear wall structures, combined form of replaceable devices was introduced in this article. Based on previous studies, combined form of replaceable coupling beam and replaceable wall foot was used in a coupled shear wall. Influences of the dimension and location of the replaceable devices to the strength and stiffness of the shear wall were investigated through numerical modeling, which was verified by experimental data. Performance comparison between the shear walls with one type and combined form of replaceable devices and the conventional coupled shear wall was performed. In general, the shear wall with combined form of replaceable devices is shown to be better energy dissipated, and proper dimensions and locations of the replaceable devices should be determined.


2012 ◽  
Vol 06 (01) ◽  
pp. 1250004 ◽  
Author(s):  
SWAPNIL B. KHARMALE ◽  
SIDDHARTHA GHOSH

The thin unstiffened steel plate shear wall (SPSW) system has now emerged as a promising lateral load resisting system. Considering performance-based design requirements, a ductility-based design was recently proposed for SPSW systems. It was felt that a detailed and closer look into the aspect of seismic lateral force distribution was necessary in this method. An investigation toward finding a suitable lateral force distribution for ductility-based design of SPSW is presented in this paper. The investigation is based on trial designs for a variety of scenarios where five common lateral force distributions are considered. The effectiveness of an assumed trial distribution is measured primarily on the basis of how closely the design achieves the target ductility ratio, which is measured in terms of the roof displacement. All trial distributions are found to be almost equally effective. Therefore, the use of any commonly adopted lateral force distribution is recommended for plastic design of SPSW systems.


2013 ◽  
Vol 40 (8) ◽  
pp. 803-814 ◽  
Author(s):  
Benoit Boulanger ◽  
Patrick Paultre ◽  
Charles-Philippe Lamarche

After the 2010 Haiti earthquake, which destroyed a significant part of the seismically vulnerable city of Port-au-Prince, the country’s capital, a 12-storey reinforced concrete building that behaved well was investigated to understand its dynamic response. This paper completes the experimental work presented in a companion paper, in which the dynamic properties of the building were obtained from ambient vibration tests, and from which a finite-element model was updated. This paper’s main objectives are: (i) to understand the causes that led to the observed structural damage; and (ii) to estimate the likely seismic excitation at the site of the building. Several nonlinear analyses involving various ground motion intensities were conducted and the results were compared with the damage reported during the on-site survey. The numerical models reproduced the observed damages well and helped to explain them. The overall response of the mixed stiff frame–wall structure was clearly dominated by the high stiffness of the shear walls, showing that this type of structural system helps in keeping reasonable interstorey drift levels. Overall, the building’s structure seems to have responded linearly to all the ground motions investigated, but deformation demands imposed to the frame by the shear walls lead to local damages.


2011 ◽  
Vol 255-260 ◽  
pp. 2439-2443 ◽  
Author(s):  
Xing Wen Liang ◽  
Jia Liang Kou ◽  
Ming Ke Deng

The paper explores the failure mode, failure mechanism and deformation capacity of medium-high and low-rise shear walls. The experimental results from load-tests of 5 high-performance concrete shear walls with 1.5 and 1.0 shear span ratio indicate that the shear walls deformation capacity benefits from several bar rings like a chain along boundary element in plastic hinge zone, showing that shear wall deformation capacity design is reliable to a certain extent, in that the plastic hinge zone often influences the damage level of shear walls. With the damage at different stages, the paper divides the performance of shear wall structure into three kinds: serviceability, life-safety and collapse-prevention. Accordingly, it is proposed that the performance controlling indicators for shear wall structures is composed of storey drift ratio and the rotation of plastic hinge zone, and also provides consult values for each performance level.


1999 ◽  
Vol 26 (5) ◽  
pp. 549-563 ◽  
Author(s):  
A Schumacher ◽  
G Y Grondin ◽  
G L Kulak

The behaviour under cyclic loading of unstiffened steel plate shear wall panels at their connection to the bounding beams and columns was investigated on full-size panel corner details. Four different infill panel connection details were tested to examine and compare their response to quasi-static cyclic loading. The load versus displacement response of the details showed gradual and stable deterioration at higher loads. The formation of tears in the connection details did not result in a loss of load-carrying capacity. In addition to the experimental program, a finite element model was developed to model the behaviour of one of the infill plate corner connection specimens. Results from the analysis showed that the finite element method can be used to obtain the load versus displacement behaviour of an infill panel-to-boundary member arrangement.Key words: cyclic loading, hysteresis, shear wall, steel, welded connection.


2012 ◽  
Vol 594-597 ◽  
pp. 2464-2469
Author(s):  
Dai Kui

Calculation of Short-leg shear walls structural system is a multi-field coupling problem. Through the research and application of short-leg shear wall structure calculation theory, based on the national codes,the short-leg shear wall design principles are established.It is discussed for the reason of the world's first short-leg shear wall structure design formation and development research. According to short-leg shear wall force characteristics, horizonal displacement is divided into destructive story drift and harmless story drift, the formula for calculating the destructive story drift is obtained, using destructive story drift angle parameters and the change of main section height to control the deformation, to control structural rigidity to ensure the structural design rational purpose.


Sign in / Sign up

Export Citation Format

Share Document