scholarly journals Effecienty of Immobilization technique of Bacillus Sublilis Asperginase producer

2012 ◽  
Vol 6 (2) ◽  
pp. 11-19
Author(s):  
Sanaa Burhan ◽  
Sahar Q. Alzobaidy

wenty Bacillus isolated were obtained from different sample food and water. Bacillus B1 isolated was the highest asparaginase producer, it was identified as a strain of B. subtilis.The highest production of asparaginase was observed when mineral salt medium containing 0.3% asparagen, pH 8 and incubated at 400c for 24 hrs. B. subtilis B1 cells were immobilized by entrapment methods (calcium alginate and agar), and by adsorption on solid surface such as sawdust and cotton. The result showed that the immobilized cells by adsorption on sawdust was the best, the immobilized cell retained 88% of asparginase activity after 48h while free cell retained 65%. Cells immobilized by adsorption on sawdust was incubated at different temperatures (37-60)0c for 12 min. and at different pH (4-10) for 120 min. the result showed that the immobilized cell had 78% remaining activity at 37c while the free cells were 58%, and retaining activity was 70% at pH=7 while free cells were 52%.

2013 ◽  
Vol 62 (2) ◽  
Author(s):  
Nor Atikah Husna Ahmad Nasir ◽  
Nor Fadhilatul Shilla Mohd Asri ◽  
Nor Azimah Mohd Zain ◽  
Mohd Suardi Suhaimi ◽  
Ani Idris

This paper presents preliminary research on immobilized Phanerochaete chrysosporium in PVA-alginate-sulfate beads to discolor textile effluents. It is an alternative technique from the current physico-chemicals. The main focus of this study was to determine the colour removal, Chemical oxygen deman (COD) removal and manganese peroxidase activity of the immobilized P.crysosporium. Immobilized P.crysosporium also confers advantages such as reusability and improved cell performance. Scanning electron microscope (SEM) was also performed to characterize the immobilization matrix. The immobilized results were compared with that of free cells. Immobilized cells were able to discolor 47.14% compared to free cells which recorded 10.78% colour removal. The COD removal of immobilized cell is more than 60% as compared to that of free cells, which could only reduced 30% of COD. Finally, the manganase peroxidase activities showed a slight difference between the immobilized and free cell at 0.15U/L and 0.13U/L respectively.


Molecules ◽  
2020 ◽  
Vol 25 (12) ◽  
pp. 2771 ◽  
Author(s):  
Mohammed Umar Mustapha ◽  
Normala Halimoon ◽  
Wan Lutfi Wan Johari ◽  
Mohd. Yunus Abd Shukor

Extensive use of carbofuran insecticide harms the environment and human health. Carbofuran is an endocrine disruptor and has the highest acute toxicity to humans than all groups of carbamate pesticides used. Carbofuran is highly mobile in soil and soluble in water with a lengthy half-life (50 days). Therefore, it has the potential to contaminate groundwater and nearby water bodies after rainfall events. A bacterial strain BRC05 was isolated from agricultural soil characterized and presumptively identified as Enterobacter sp. The strain was immobilized using gellan gum as an entrapment material. The effect of different heavy metals and the ability of the immobilized cells to degrade carbofuran were compared with their free cell counterparts. The results showed a significant increase in the degradation of carbofuran by immobilized cells compared with freely suspended cells. Carbofuran was completely degraded within 9 h by immobilized cells at 50 mg/L, while it took 12 h for free cells to degrade carbofuran at the same concentration. Besides, the immobilized cells completely degraded carbofuran within 38 h at 100 mg/L. On the other hand, free cells degraded the compound in 68 h. The viability of the freely suspended cell and degradation efficiency was inhibited at a concentration greater than 100 mg/L. Whereas, the immobilized cells almost completely degraded carbofuran at 100 mg/L. At 250 mg/L concentration, the rate of degradation decreased significantly in free cells. The immobilized cells could also be reused for about nine cycles without losing their degradation activity. Hence, the gellan gum-immobilized cells of Enterobacter sp. could be potentially used in the bioremediation of carbofuran in contaminated soil.


Biologia ◽  
2010 ◽  
Vol 65 (3) ◽  
Author(s):  
Shuvashish Behera ◽  
Rama Mohanty ◽  
Ramesh Ray

AbstractMahula (Madhuca latifolia L.) is a deciduous tree commonly found in the tropical rain forests of Asian and Australian continent. Corolla, the edible part of its flowers, is rich in fermentable sugar (37 ± 0.23%; on dry weight basis). Batch fermentation of mahula flowers was carried out using Zymomonas mobilis MTCC 92 free cells and cells immobilized in calcium alginate matrix. The ethanol productions were 122.9 ± 0.972 and 134.6 ± 0.104 g/kg flowers on dry weight basis using free and immobilized cells, respectively, after 96 h of fermentation, which showed that cells entrapped in calcium alginate matrix yielded 8.7% more ethanol than free cells. Further, the immobilized cells were physiologically active up to three more cycles of fermentation producing 132.7 ± 0.095, 130.5 ± 0.09 and 128.7 ± 0.056 g ethanol per kg flower in first, second and third cycle, respectively.


2006 ◽  
Vol 49 (6) ◽  
pp. 873-880 ◽  
Author(s):  
Leila Larisa Medeiros Marques ◽  
João Batista Buzato ◽  
Maria Antonia Pedrine Colabone Celligoi

This study investigated the effect of raffinose and ultrasound pulses on invertase release from free S. cerevisiae and S. cerevisiae immobilized in Luffa cylindrica. The free cell culture was submitted to 2% raffinose pulse and irradiated for 2 minutes at 0.12 and 0.46 h-1 dilution rates. The immobilized cell culture was submitted to raffinose pulse and irradiated for 1, 2 and 4 minutes, at 0.10 h-1 dilution rate. In immobilized cells, the raffinose pulse increased the invertase activity from 5.38 to 7.27 U/mg. Ultrasound application in free cell culture at the 0.12 h-1 dilution rate gave the best results. The activity varied from 25.08 to 29.38 U/mg while the increase in immobilized cells was from 5.22 to 9.70 U/mg when sonicated for two minutes. These results showed that ultrasound application in continuous culture could have great potential for application in biotechnological techniques.


2003 ◽  
Vol 66 (11) ◽  
pp. 2076-2084 ◽  
Author(s):  
DANIEL GUÉRIN ◽  
JEAN-CHRISTOPHE VUILLEMARD ◽  
MURIEL SUBIRADE

Bifidobacterium cells were encapsulated in a mixed gel composed of alginate, pectin, and whey proteins. Two kinds of capsules were obtained: gel beads without membranes and gel beads with two membranes formed by the transacylation reaction. In vitro studies were carried out to determine the effects of simulated gastric pH and bile salts on the survival of free and encapsulated Bifidobacterium bifidum. The protective effects of gel beads without membranes and gel beads coated with two membranes formed by the transacylation reaction were evaluated. After 1 h in an acidic solution (pH 2.5), the free-cell counts decreased by 4.75 log units, compared with a <1-log decrease for entrapped cells. The free cells did not survive after 2 h of incubation at pH 2.5, while immobilized-cell counts decreased by about 2 log units. After incubation (1 or 3 h) in 2 and 4% bile salt solutions, the bifidobacterium mortality level for membrane-free gel beads (4 to 7 log units) was higher than that for free cells (2 to 3 log units). However, counts of bifidobacteria immobilized in membrane-coated gel beads decreased by <2 log units. Cell encapsulation in membrane-coated protein-polysaccharide gel beads could be used to increase the survival of healthy probiotic bacteria during their transit through the gastrointestinal tract.


Biologia ◽  
2012 ◽  
Vol 67 (5) ◽  
Author(s):  
Maegala Nallapan Maniyam ◽  
Fridelina Sjahrir ◽  
Abdul Ibrahim ◽  
Anthony Cass

AbstractAnthropogenic sources contribute to the bulk presence of cyanide, which causes substantial health and environmental concerns. A petroleum-contaminated soil isolate, Rhodococcus UKMP-5M has been verified to efficiently degrade high concentration of cyanide in the form of KCN in our previous study. In order to enhance the cyanide-degrading ability of this bacterium, different encapsulation matrices were screened to immobilize cells of Rhodococcus UKMP-5M for degradation of cyanide. It was revealed that the biocatalyst activity and bead mechanical strength improved significantly when calcium alginate encapsulation technique was employed as compared to free cells. The results also indicated that the immobilized cell system could tolerate a higher level of KCN concentration and were able to support a higher biomass density. In addition, the embedded cells retained almost 96% of their initial cyanide removal efficiency during the first five batches and the entrapped cell system maintained 64% of its initial activity after eight successive batches. The encapsulated beads could be easily recovered from the production medium and reused for up to five batches without significant losses of cyanide-degrading ability, which proved to be advantageous from an economic point of view. From this study, it could be inferred that the novel Rhodococcus UKMP-5M strain demonstrated high cyanide-degrading ability and the optimized calcium alginate immobilization technique provided a promising alternative for practical application of large scale remediation of cyanide-bearing wastewaters.


Molecules ◽  
2018 ◽  
Vol 23 (11) ◽  
pp. 2888 ◽  
Author(s):  
Jinpeng Wang ◽  
Yao Hu ◽  
Chao Qiu ◽  
Haoran Fan ◽  
Yan Yue ◽  
...  

Palm curtain was selected as carrier to immobilize Bacillus circulans ATCC 21783 to produce β-cyclodextrin (β-CD). The influence for immobilization to CGTase activity was analyzed to determine the operation stability. 83.5% cyclodextrin glycosyltransferases (CGTase) of the 1st cycle could be produced in the 7th cycle for immobilized cells, while only 28.90% CGTase was produced with free cells. When palm curtain immobilized cells were reused at the 2th cycle, enzyme activities were increased from 5003 to 5132 U/mL, which was mainly due to physical adsorption of cells on palm curtain with special concave surface structure. Furthermore, conditions for expanded culture of immobilized cells in a 5 L fermentation tank were optimized through specific rotation speed procedure (from 350 r/min to 450 r/min with step size of 50 r/min) and fixed ventilation capacity (4.5 L/min), relations between biomass, enzyme activity, pH, and oxygen dissolution was investigated, and the fermentation periods under the two conditions were both 4 h shorter. Compared with free cell, immobilized cell was more stable, effective, and had better application potential in industries.


2008 ◽  
Vol 58 (11) ◽  
pp. 2155-2163 ◽  
Author(s):  
Sumana Siripattanakul ◽  
Wanpen Wirojanagud ◽  
John M. McEvoy ◽  
Francis X. M. Casey ◽  
Eakalak Khan

Bench-scale sand column breakthrough experiments were conducted to examine atrazine remediation in agricultural infiltrate by Agrobacterium radiobacter J14a (J14a) immobilized in phosphorylated-polyvinyl alcohol compared to free J14a cells. The effects of cell loading and infiltration rate on atrazine degradation and the loss of J14a were investigated. Four sets of experiments, i) tracers, ii) immobilized dead cells, iii) immobilized cells, and iv) free cells, were performed. The atrazine bioremediation at the cell loadings of 300, 600, and 900 mg dry cells l−1 and the infiltration rates of 1, 3, and 6 cm d−1 were tested for 5 column pore volumes (PV). The atrazine breakthrough results indicated that the immobilized dead cells significantly retarded atrazine transport. The atrazine removal efficiencies at the infiltration rates of 1, 3, and 6 cm d−1 were 100%, 80–97%, and 50–70% respectively. Atrazine remediation capacity for the immobilized cells was not significantly different from the free cells. Both infiltration rate and cell loading significantly affected atrazine removal for both cell systems. The bacterial loss from the immobilized cell system was 10 to 100 times less than that from the free cell system. For long-term tests at 50 PV, the immobilized cell system provided consistent atrazine removal efficiency while the atrazine removal by the free cells declined gradually because of the cell loss.


2019 ◽  
Vol 14 (2) ◽  
pp. 153-160
Author(s):  
Nor Atikah Husna Ahmad Nasir ◽  
Noor Farazian Zafira Che Pa ◽  
Muhammad Akmal Roslani ◽  
Rohayu Ramli ◽  
Nor Azimah Mohd Zain

Turqoise blue (Remazol Blue BB) is a type of common dye which is constantly discharged from industriesinto the water bodies without proper treatment. This dye could affect aquatic and human life due to itstoxicity. Existing methods to overcome this issue are too expensive and not eco-friendly. Alternatively, thisstudy was conducted by immobilizing Penicillium sp. into sodium-alginate-sulfate beads (IC) to decolorizethe turquoise blue dye at 10 ppm. The percentage of dye decolourization, Chemical Oxygen Demand (COD)removal and laccase of IC and free cells were analysed throughout this study. IC successfully decolourizeddyes up to 72.83%, meanwhile, free cells could only decolourized dyes up to 56.59%. In addition, CODremoval by IC cell is 31.92% higher compared to free cell. For laccase activity, IC is higher compared tofree cells up to 30%. Based on higher decolourization, enzymatic activity and COD removal, IC has apotential to be an alternative to decolourize dyes better than free cells. Keywords: immobilized cells, free cells, decolourization, dyes, laccase


2010 ◽  
Vol 5 (3) ◽  
Author(s):  
S. Siripattanakul ◽  
K. Ratanapongleka ◽  
P. Sangthean ◽  
K. Yoottachana ◽  
K. Pimwongnok

Fermented rice noodle is a major source of food industry generating highly complex organic content (starch) wastewater. This study investigated the treatment of fermented rice noodle wastewater using calcium alginate entrapped yeast cells compared to the free cells. The treatment includes a two-step process: acid hydrolysis for breaking down starch to glucose and fermentation for degrading glucose to ethanol. Yeast culture, Saccharomyces cerevisiae, was used in this study. The experiment was conducted to examine optimum acid concentration and cell entrapment condition for fermentation. Sulfuric acid concentrations ranged from 0.25 to 1.00% by volume were tested while the cells entrapped in calcium alginate at cell-to-matrix (alginate) ratios (by volume) of 1:5, 1:10, and 1:20 were varied. The result showed that the optimum acid concentration of 1.00% provided 5-time higher glucose concentration compared to that in raw wastewater. After the batch fermentation, the entrapped cells reduced total chemical oxygen demand (COD) by 33-46% and glucose concentration by 88-90% while the free cells cannot obviously remove COD and reduced glucose concentration by 62%. The entrapped cells at the cell-to-matrix ratio of 1:5 achieved the best glucose biotransformation performance. The treatment reaction followed second-order kinetics. The entrapped and free cell systems gave the treatments with kinetic constants of 0.007 to 0.010 and 0.001 L/mg/hr, respectively. The entrapped and free yeast cell system potentially produced ethanol of 643 to 801 mg/L.


Sign in / Sign up

Export Citation Format

Share Document