scholarly journals TESTING PLANT FOR ENGINE WITH ENERGY EFFICIENT COOLING SYSTEM

2021 ◽  
Vol 2021 (1) ◽  
pp. 15-21
Author(s):  
Mikhail Nikolaevich Pokusaev ◽  
Alexei Viktorovich Trifonov ◽  
Vasiliy Aleksandrovich Kostyrenko

The article focuses on developing a new testing system for the Iveco 8041I06 55 R900 engine in the laboratory “Marine Diesels” under Astrakhan state technical university in the event of modernizing the test benches with ship engines. There has been considered creating an ex-perimental unit for conducting heat-balance tests of a marine engine using modern measurement and control tools. The unit consists of a converted engine powered by a generator. The engine will be tested according to the generator characteristic. There is given the data on the main technical parameters of the tested engine and on the potential configuration of the instrument base. As a load for the generator, it is planned to use a resistive load device. A fuel micro-meter will be used to measure the fuel consumption. Flow meters are selected for measuring the flow rates. Heat carriers and temperature sensors are selected for measuring temperature of the exhaust gases. The parameters of the engine under consideration are compared with the requirements of the Russian River Register for marine engines. The scope of work on converting an industrial engine into a marine engine in terms of the modernization of the cooling system has been described. The unit is designed to study the ship's cooling system operation, in which the control is carried out by changing the speed of the suspended pump depending on the temperature of the seawater. There was selected a pump and a device to regulating its rotating speed. The positive effect is achieved by reducing the power consumed by the pump. It saves the fuel and reduces the environmental damage due to the lower carbon dioxide emissions

2018 ◽  
Vol XIX (1) ◽  
pp. 493-501
Author(s):  
Ali L

Even if the cooling system of a marine engine is regarded as an auxiliary system of less importance, this is absolute necessary for its operation. Recent research in advanced cooling system showed that there is a potential of greenhouse gasses reduction and fuel economy, but operational issues related to corrosion, fatigue and scale formation still remain.


2012 ◽  
Vol 24 (1) ◽  
pp. 25-32
Author(s):  
Adam Gdynia

Abstract Presently, as a result of the technical progress, more and more complicated machines are being used in our everyday life. This is even more the case in relation to technology used at sea, where highly specialised services are needed. Sophisticated marine devices require special diagnostic methods that take into account the specific conditions of use of this type of machinery. In this paper we present the diagnostic systems elaborated to support the exploitation of the vessel power. Marine engine is a complex technical object. For the purpose of diagnostics it is convenient to divide the engine into several units - subsystems such as: piston -crank assembly; working medium exchange system, fuel supply system, lubricating system, cooling system, starting up - reversing system; combustion chamber, etc. The organization of the marine engine and auxiliary machinery diagnostic process can usually come down to two stages, general diagnostics and damage location. Most popular in marine engine diagnostics have been the periodic run analyzers, called pressure analyzers, electronic indicators. The diagnostic system of marine engine is able to assess the current engine condition and give forecast concerning its future operation in a complex way with the use of computer technology. Working out operating decision was based on proper preparation of operational parameters which were processed in a computer according to defined algorithms.


1992 ◽  
Vol 27 (2) ◽  
pp. 221-238 ◽  
Author(s):  
W. Ripl

Abstract Densely populated urban areas, which have developed over the last century, depend heavily on centralized water supply, sewage treatment plants, and hydroelectric or thermal power generation with vast demand of cooling water. Considerable areas have been drained or sealed, and the short-circuited water cycle has been distorted. Large rivers have been converted to shipping canals with the permanent risk of accidental pollution. Technical means such as sewage treatment, air filters, emission control and lake and soil restoration measures have contributed to correct the environmental damage. However, a balance sheet for irreversible matter losses (mainly base cation charges) from the urbanized areas and the surrounding landscape into the sea shows ever-increasing trends. These losses are destabilizing the ecosystems. In this paper, management of the water cycle in urban areas, together with the coupled matter cycles, is discussed. Particular reference is given to Metropolitan Berlin, with a network of shipping canals, which move biologically treated waste, containing base cations and nutrients to the surrounding rural areas. This could create manageable productive wetlands and re-establish soil fertility. At the same time, the natural cooling system close to the urban areas will be improved by providing more areas with permanent vegetation. In addition, reduction of the present large oscillations of the groundwater table, resulting from groundwater pumping and its recharge with less polluted surface water, is contemplated. The widely used shoreline infiltration of the Havel River should then be eliminated and the severe damage of the littoral vegetation in large sections of the Havel River system be avoided.


Author(s):  
Burhan Afzal

Abstract: Portland cement is used by the construction industries, which is known to be a heavy contributor of carbon dioxide emissions and environmental damage. Adding of industrial wastes like demolished old concrete OF structures, silica fume (SF) fly ash (FA) as additional cementing materials (SCMs) could result in a substantial reduction of the overall Carbon dioxide trace marks of the final concrete product. Use of these additional materials in construction industry especially in the making of concrete is highly challenging. Remarkable research efforts are needed to study about the engineering properties of concrete incorporating such industrial wastes. Present research is an effort to study the properties of concrete adding industrial wastes such as demolished concrete, FA and SF The improvement of properties of RCA concrete with the incorporation of two ureolytic-type bacteria, Bacillus subtilis and Bacillus sphaericus to improve the properties of RCA concrete. The experimental investigations are carried out by experts evaluate the improvement of the compressive strength, capillary water absorption and drying shrinkage of RCA concrete adding bacteria. Seven concrete mixes are manufactured using Portland slag cement (PSC) partially changed with SF ranging from 0 to 30%. The mix proportions were obtained as per Indian standard IS: 10262-2009 with 10% extra cement when SF is taken as per the above the construction practice by experts. Optimal dosages of SF for maximum values of compressive strength, tensile splitting strength and flexural strength at 28 days are determined. Keywords: Bacillus subtilis, Bacillus sphaericus, RCA, PSC, Silica Fume.


Energies ◽  
2021 ◽  
Vol 14 (19) ◽  
pp. 6189
Author(s):  
Maria M. Symeonidou ◽  
Effrosyni Giama ◽  
Agis M. Papadopoulos

The current EU energy and climate policy targets a significant reduction of carbon dioxide emissions in the forthcoming years. Carbon pricing, embedded in the EU emissions trading system, aims at achieving emission reductions in a more evenly spread way and at the lowest overall cost for society, compared with other environmental policy tools, such as coal or electricity taxes, or incentives such as subsidies on renewables. Still, the implementation of the decarbonization policy depends on several technical parameters such as the type, size and connectivity of the energy system as well as economic restrictions that occur. Within this paper, an optimization tool will be presented, focusing on cleaner energy production and on the control and reduction of environmental impact regarding energy storage solutions. Various types of batteries are examined and evaluated towards this direction. Emphasis is given to setting new criteria for the decision-making process, considering the size of battery storage and the selection of the battery type based on the environmental impact assessment parameter. The objective function of the system is formulated so as to evaluate, monitor and finally minimize environmental emissions, focusing mainly on carbon emissions. Optimization is carried out based on mixed integer nonlinear programming (MINLP). Two of the main battery types compared are lead–acid and lithium-ion; both of them result in results worth mentioning regarding the replacement impact (seven times during system lifetime for lead–acid) and the total environmental impact comparison (lithium-ion may reach a 60% reduction compared to lead–acid). Case studies are presented based on representative scenarios solved, which underline the importance of choosing the appropriate scope for each case and demonstrate the potential of the tool developed, as well as the possibilities for its further improvement.


Author(s):  
Soheil Jafari ◽  
Julian F Dunne ◽  
Mostafa Langari ◽  
Zhiyin Yang ◽  
Jean-Pierre Pirault ◽  
...  

The evaporative cooling system concepts proposed over the past century for engine thermal management in automotive applications are examined and critically reviewed. The purposes of this review are to establish the evident system shortcomings and to identify the remaining research questions that need to be addressed to enable this important technology to be adopted by vehicle manufacturers. Initially, the benefits of the evaporative cooling systems are restated in terms of the improved engine efficiency, the reduced carbon dioxide emissions and the improved fuel economy. This is followed by a historical coverage of the proposed concepts dating back to 1918. Possible evaporative cooling concepts are then classified into four distinct classes and critically reviewed. This culminates in an assessment of the available evidence to establish the reasons why no system has yet been approved for serial production commercially. Then, by systematic examination of the critical areas in evaporative cooling systems for application to automotive engine cooling, the remaining research challenges are identified.


2020 ◽  
Vol XXIII (1) ◽  
pp. 34-40
Author(s):  
Mircea Dorin Vasilescu

The purpose of this work is to analyse the technological aspects of the realization of components by 3D printing for the production of plan parts for experimental devices or stands. The author of this work envisages the realization of flat elements to which it can be determined how the organic resin material behaves when printing 3D with additive DLP technology. The work is structured in 5 chapters. In the first chapter, an analysis of how to make the plan elements by the additive DLP technology specific to the experimental programme adopted in this paper. The analysis will be carried out both constructively and functionally taking into account possibilities for designing components and making them. Chapter two is allocated to ordering technological parameters for 3D printing generation of parts defining the main technical parameters for generating them with ecological resin. The next chapter is allocated to analysing how to carry out the printer command program and check the structure of the element. In the four chapter, the dimensional measurement and control programme with dimensional and optical is presented. The last chapter is allocated to conclusions and comparisons from a technological point of view compared to other specific technologies for generating the analysed elements.


2003 ◽  
pp. 277-315 ◽  
Author(s):  
J. Timmons Roberts ◽  
Peter E. Grimes ◽  
Jodie L. Manale

Carbon dioxide is understood to be the most important greenhouse gas believed to be altering the global climate. This article applies world-system theory to environmental damage. An analysis of 154 countries examines the contribution of both position in the world economy and internal class and political forces in determining a nation's CO, intensity. CO, intensity is defined here as the amount of carbon dioxide released per unit of economic output. An inverted U distribution of CO, intensity across the range of countries in the global stratification system is identified and discussed. Ordinary Least Squares regression suggests that the least efficient consumers of fossil fuels are some countries within the semi-periphery and upper periphery, spe-cifically those nations which are high exporters, those highly in debt, nations with higher military spending, and those with a repressive social structure.


2018 ◽  
Vol 44 ◽  
pp. 00155
Author(s):  
Lukasz Rymaniak ◽  
Jacek Pielecha ◽  
Lukasz Brzeziński

The article presents considerations regarding determining the NOx emissions from auxiliary compression-ignition marine engines. In order to determine the real impact of a given object on air pollution, it is necessary to first carry out research aimed at determining its emission characteristics. Thus, it is necessary to conduct tests in real operating conditions or to calculate the ecological indicators based on the operating conditions. The paper presents the NOx emissions intensity of an auxiliary Tier III standard marine engine, which is used in the drive system of various heavy, off-road vehicles and water vessels. Due to the structure characteristics of the considered engine group, the presented relations and results refer to only one cylinder. This data was used to calculate the NOx emission of a marine auxiliary engine, which used the operating conditions obtained from dynamometer tests and the engine construction (the number of cylinders). The presented methodology of activities can be used to assess the ecological indicators of ships in actual navigation, including primarily the maneuvers performed in the port. The article is supplemented with theoretical considerations regarding the problem of pollutant emissions from auxiliary marine engines.


Sign in / Sign up

Export Citation Format

Share Document