scholarly journals DETERMINING A COMPLEX FACTOR OF TECHNICAL CONDITION OF THE OBJECT, USING A STABILIZING BLOCK OF CATALYTHIC REFORMING UNIT AS AN EXAMPLE

Author(s):  
Alena Nikolaevna Seliverstova ◽  
Denis Valerievich Nemchinov ◽  
Elena Fedorovna Raykova

Fail-safety taken as a factor of completeness of using the resources of the production facility is important for characterizing the technological process. In most modern automated process control systems the above factor is implemented by means of the emergency protection system which allows to avoid the progressing emergency. However, such measures significantly increase the downtime of process equipment, since the possibility of developing pre-emergency and emergency situations when combining several permissible and close to emergency values of parameters is not taken into account. To solve the problem of reducing machinery downtime, a method for determining the object state indicator has been proposed. It takes into account all variants of the influence of technological parameters on each other as well as their combinations leading to the emergency progress. As well, the proposed solution helps to set the proximity of the operating mode of the production equipment to the threshold emergency, which greatly reduces the risk of emergency in situ, thereby reducing equipment downtime and economic losses. The method of determining the indicator of the state of the object is considered on the example of the stabilization block of hydrogenate catalytic reforming unit.

Author(s):  
Denis Valerievich Nemchinov ◽  
Alena Nikolaevna Seliverstova ◽  
Oleg Victorivich Antonov

The article touches upon the problem of reducing the risk of accidents at industrial facilities, which is the priority task of industrial safety management. Currently, accident-free production systems rely on monitoring the process state parameters within the acceptable range and are limited to emergency protection systems, alarms, and locks. However, for complex industrial facilities, it is necessary to recognize pre-emergency situations, which allows predicting the occurrence of an emergency mode and preventing the process from stopping or reducing losses in case of an accident. To solve this problem, a system for managing pre-emergency situations is proposed, which is considered on the example of a catalytic reforming installation. It is based on a method for determining the parametric indicator of the object's state, an algorithm for the proposed system, databases of possible causes of pre-emergency and emergency conditions and a list of measures to eliminate them. This solution allows to set the proximity of the operating mode of the process equipment to the emergency mode, which greatly lowers the risk of accident at the facility, thereby reducing the downtime of the equipment and economic losses.


Author(s):  
Татьяна Круглова ◽  
Tat'yana Kruglova

The main elements of the process equipment are DC and AC motors that largely determine its reliability and efficiency of operation. The constant monitoring of technical condition by methods of technical diagnostics allows a significant extension of equipment life and reduces financial costs. To implement this approach, specialized methods are required. They allow to determine the technical condition of DC and AC motors with a high degree of reliability, distinguishing their faulty state from changing the operating mode. Diagnostics should be performed in the mode of equipment operation; therefore, the use of complex measuring devices is not permissible. This article presents the results of search studies of diagnosis method that meets the above-mentioned requirements. Current, voltage and vibration are selected as diagnostic parameters. It is proposed to analyze them by the wavelet transform. As a result of numerous experiments, the relationship between changes in the wavelet transform coefficients on characteristic scales has been established. This allows to determine the technical condition of the electric motor and the mode of its load, on the basis of which a diagnostic method has been developed using neural networks.


2019 ◽  
Vol 03 (03) ◽  
pp. 16-19
Author(s):  
E.K. Mukhutdinova ◽  
◽  
K.G. Abdul'minev ◽  
A.I. Kolyshkina ◽  
V.R. Tukaev ◽  
...  

Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 373
Author(s):  
Siti Fairuz Yusoff ◽  
Farah Farhanah Haron ◽  
Norhayu Asib ◽  
Mahmud Tengku Muda Mohamed ◽  
Siti Izera Ismail

Postharvest fruits including tomatoes are commonly infected by gray mold disease resulting in significant economic losses in the fruit industry. Therefore, this study aimed to develop botanical fungicide derived from Vernonia amygdalina leaf extract to control gray mold on tomato. The emulsion formulation containing surfactant, oil carrier and water was optimized at different non-ionic alkyl polyglucoside surfactants through eleven combinations of oil to surfactant ratio (0:10, 1:9, 2:8, 3:7, 4:6, 5:5, 6:4, 7:3, 8:2, 9:1 and 10:0 w/w). From eight selected formulations, two formulations, F5 and F7 showed stable in storage, remarkable thermodynamic stability, smaller particle size (66.44 and 139.63 nm), highly stable in zeta potential (−32.70 and −31.70 mV), low in polydispersity index (0.41 and 0.40 PdI), low in viscosity (4.20 and 4.37 cP) and low in surface tension (27.62 and 26.41 mN/m) as compared to other formulations. In situ antifungal activity on tomato fruits showed F5 formulation had a fungicidal activity against B. cinerea with zero disease incidence and severity, whereas F7 formulation reduced 62.5% disease incidence compared to a positive control with scale 1. Based on these findings, F5 formulation exhibited pronounced antifungal activity and may contribute to the development of new and safe antifungal product against gray mold on tomato.


2021 ◽  
Vol 12 (2) ◽  
pp. 112-121
Author(s):  
Oleksandr Khrulev ◽  
◽  
Olexii Saraiev ◽  
Iryna Saraieva ◽  
◽  
...  

The analysis of the crankshaft bearing condition of the automotive internal combustion engines in the case of insufficiency and breakage of oil supply to them is carried out. It is noted that this fault is one of the most common causes of damage to rubbing pairs in operation. At the same time, the different groups of bearings are often damaged, which cannot be explained within the framework of existing models of plain bearing lubrication. The objective of the work is to develop a mathematical model of oil supply to connecting rod bearings in emergency mode, taking into account the characteristic features of the bearing design. The model also, depending on the nature of the damage, should help to determine and explain the causes of bearing failures if they occur in different modes when operating conditions are broken. A computational model has been developed that makes it possible to assess the effect of design differences in the features of oil supply and the action of the centrifugal forces during crankshaft rotation on the oil column in the lubrication hole where oil is supplied to the conrod bearing. Calculations of the change in time of the oil supply pressure to the connecting rod bearings for the various designs of the crankshaft lubrication holes have been performed. It is shown that, depending on the operating mode of the engine and its design, the oil pressure in front of the connecting rod bearings does not disappear immediately after oil supply failure to crankshaft. Moreover, the lower the crankshaft speed is, the longer the lubrication of the conrod bearings will continue. The calculation results are confirmed by the data of the expert studies of the engine technical condition, in which the crankshaft was wedged in the damaged main bearings was found in the absence of serious damage to the connecting rod ones. It has been found that such features of the damage correspond to an rapid breakage of the oil supply to the crankshaft in the case of such operational damage as the oil pump and pressure reducing valve failure, the oil filter seal and oil pan destruction, etc. The developed model explains the difference in lubrication conditions and in the damage feature to the main and connecting rod bearings in the emergency cases of the oil supply breakage, which are observed during operation, and helps to clarify the failure causes. This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines This makes it possible to use the model and the obtained data when providing auto technical expert studies of the failure causes of automobile internal combustion engines when the operating conditions are broken.


Author(s):  
A. P. Oliinyk ◽  
G. V. Grigorchuk ◽  
R. M. Govdyak

In the context of providing trouble-free operation of oil and gas pipelines and preventing possible negative impacts on the environment, the issues of constructing an integrated mathematical model for assessing the technical condition of pipelines and the impact of emergency situations on the state of the environment in the course of hydrocarbon leakage are considered. The model of the evaluation of the stress-strain state of the pipeline according to the data on the displacement of surface points for the above ground and underground sections is given by constructing the law of motion of the site by known displacements of a certain set of surface points using assumptions about the type of deformation of the sections and reproduction of the deformations and stresses tensors components   on the basis of different models of deformed solid body. The specified model does not require information on the whole complex of forces and loads acting on the investigated object during operation. The flow model has been refined in a pipeline with a violation of its tightness by recording a special type of boundary conditions for a Navier-Stokes equation system in a two-dimensional formulation and developing an original method for its solution on the basis of the finite difference method. In the article the stability conditions of the proposed numerical schemes on basis of the spectral sign of stability are presented. In order to assess possible negative impacts on the environment, a model of propagation of matter at its leakage from the pipeline was developed by solving two-dimensional diffusion equations taking into account the variables and different types of boundary conditions that take into account the number of sources of pollution and their intensity. The results of computations based on computational algorithms implemented by these models and graphic material illustrating these calculations are presented, peculiarities of distribution of harmful substances in the environment near the pipeline are analyzed. Directions of further researches for successful practical realization of the offered models are established.


2006 ◽  
Vol 321-323 ◽  
pp. 1707-1710
Author(s):  
Kang Ho Ahn ◽  
Yong Min Kim

A feasibility test for real-time fine particle measurements in vacuum semiconductor processing equipment has been conducted. The approach in monitoring particles in process equipment is an installation of a sensor at a critical location inside the process equipment (hence the term ‘in-situ’) to track free particle levels in real-time. Common method for particle detection in a process chamber today is a use of test wafer with a laser wafer scanner. However, this method does not give a real time information of the particle status in the process chamber. In this paper, a new method has been developed to detect particles in real time in vacuum system for particles smaller than an optical method can detect. The system consists of a particle charging region and a particle detection region in a vacuum system. Particles with 50nm are successfully detected at about 10 torr region.


2018 ◽  
Vol 41 ◽  
pp. 03020 ◽  
Author(s):  
Evgeny Kuzin ◽  
Vladimir Bakin ◽  
Dmitriy Dubinkin

The Earth, being the main object and operational basis for mining, is exposed to the greatest impact because of extracting minerals. Protection of elements of the biosphere, including subsoil, should provide for the provision of scientifically based and economically justified completeness and complexity of use. The article discusses the need to monitor the technical condition of mining equipment, as applied to assessing its technical condition and reducing energy consumption by this equipment. The dependence of energy consumption on vibration parameters and temperature of equipment surfaces is shown. The data of the results of vibration parameters monitoring are given. Criteria are given for estimating the energy efficiency of operation of process equipment and, accordingly, the influence of these parameters on the environment.


Pharmaceutics ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 588
Author(s):  
Martin Spoerk ◽  
Ioannis Koutsamanis ◽  
Josip Matić ◽  
Simone Eder ◽  
Carolina Patricia Alva Zúñiga ◽  
...  

To avoid any type of cross-contamination, residue-free production equipment is of utmost importance in the pharmaceutical industry. The equipment cleaning for continuous processes such as hot melt extrusion (HME), which has recently gained popularity in pharmaceutical applications, necessitates extensive manual labour and costs. The present work tackles the HME cleaning issue by investigating two cleaning strategies following the extrusion of polymeric formulations of a hormonal drug and for a sustained release formulation of a poorly soluble drug. First, an in-line quantification by means of UV–Vis spectroscopy was successfully implemented to assess very low active pharmaceutical ingredient (API) concentrations in the extrudates during a cleaning procedure for the first time. Secondly, a novel in-situ solvent-based cleaning approach was developed and its usability was evaluated and compared to a polymer-based cleaning sequence. Comparing the in-line data to typical swab and rinse tests of the process equipment indicated that inaccessible parts of the equipment were still contaminated after the polymer-based cleaning procedure, although no API was detected in the extrudate. Nevertheless, the novel solvent-based cleaning approach proved to be suitable for removing API residue from the majority of problematic equipment parts and can potentially enable a full API cleaning-in-place of a pharmaceutical extruder for the first time.


Sign in / Sign up

Export Citation Format

Share Document