scholarly journals Preparation and Solvents Effect Study of Asymmetric Cellulose Acetated/Polyethyleneimine Blended Membranes for Dialysis Application

2017 ◽  
Vol 2 (4) ◽  
pp. 5
Author(s):  
Hizba Waheed ◽  
Arshad Hussain

The aim of this research is to study the effect of various solvents on membrane morphology and performance of cellulose acetate (CA) based polymeric membranes having Polyetyleneimine (PEI) additive. The CA/PEI blended membranes are to be used for dialysis operation. For this purpose, acetic acid, formic acid, 1-Methyl-2-pyrolidone (NMP) and N, N-Dimethylacetamide (DMAC) are used. The best performing membrane is selected and is modified using various solvents to choose the best solvent that can enhance the membrane performance efficiently. Afterwards contact angle measurement, pure water flux and water up take of modified membranes are determined to check the change in dialysis performance. Surface morphology of membrane is studied using SEM and AFM. All these results displayed blending of polymer, solvents and additive in different ways. All prepared membranes were also tested for bovine serum albumin (BSA) rejection and urea clearance. From all the solvents used, formic acid gave the best results. The blending is homogeneous and macro void formation is appropriate for dialysis application.  The replacement of acetic acid with formic acid (C.A+ F.A+PEI) showed hydrophilic nature and increased the BSA rejection percentage. Urea clearance was augmented as well to an appreciable value. The results revealed that from all the mentioned above solvents, formic acid is most suitable one for dialysis operation.

2019 ◽  
Vol 258 ◽  
pp. 04003
Author(s):  
Azman Ismail ◽  
Ramlah Mohd Tajuddin ◽  
Hamizah Mohktar ◽  
Ahmad Fauzi Ismail

A modified thin film PSf-MCC reverse osmosis membrane was prepared by interfacial polymerization between aqueous MPD and TMC as the organic monomer. Aim of this study is to determine the effect of MCC in membrane formulation and fabrication. The surface and cross section morphology of TFC PSF/MCC membrane shows MCC particle which able to improve hydrophilicity of the membrane. The SEM images showed dense and porous structure of the MCC incorporated membranes. In addition, the water contact angle measurement also confirmed the increased hydrophilicity of the modified membranes. The effect of MCC on membrane matric influence the membrane performance in terms of NaCl rejection and pure water flux. Results showed that TFC PSf/MCC membrane shows NaCl rejection up to 98.9% compared with TFC PSf membrane. TFC PSf/MCC membrane also showed the highest pure water flux which is 3.712 Lm2/hr compare with TFC PSF membrane which is 3.606 Lm2/hr. The overall result proved that MCC particle could improve membrane hydrophilicity hence, increased pure water flux and salt rejection.


2021 ◽  
Vol 878 ◽  
pp. 23-27
Author(s):  
Xech Rafael Aldrei U. Dela Paz ◽  
Rhoda B. Leron

In this work, we investigated the applicability of polyethersulfone/polydopamine/copper (II) (PES/PDA/Cu2+) membrane composite in microfiltration. Pristine PES membrane was prepared via non-induced phase separation (NIPS), and the surface was modified by coating with PDA and deposition of Cu (II) to enhance its physical and antibacterial properties. The membrane was characterized using energy-dispersive X-ray spectroscopy, scanning electron microscopy and water contact angle measurement. The hydrophilic character of the PES membrane significantly increased and the mechanical properties were greatly improved. Results showed that the porosity of the membrane was affected by the concentration of the polymer in the casting solution, and the membrane was suitable for filtration application due to its open-cell structure. Pure water flux was enhanced upon surface modification implying that hydrophilicity has more influence on the flux than the shrinking of the pore size. The antibacterial assay suggested that the membranes possess antibacterial property.


2019 ◽  
Vol 9 (1) ◽  
pp. 3744-3749
Author(s):  
H. Waheed ◽  
A. Hussain

Polyvinyl pyrolidone (PVP) was added as filler in cellulose acetate (CA) to produce mixed matrix membrane (MMM) for hemodialysis operation. Phase separation induced by diffusion (DIPS) was used for fabrication of mixed matrix CA/PVP flat sheet membranes. The effect of adding PVP was investigated on the morphology and permeation efficiencies of CA membranes. The surface arrangement of polymer and additives in pure and blended membrane was studied by FTIR, contact angle and SEM. Results revealed homogenous and significant mixing of PVP content into pure CA matrix. Performance efficiency of blended membranes was investigated by means of pure water flux (PWF), urea clearance and % rejection of bovine serum albumin (BSA). The observable decrease of contact angle from 83° to 69° in CA/PVP MMM membranes of varying composition effectively revealed enhancement in hydrophilicity of MMM membrane surface. For protein rejection, all CA/PVP membranes rejected>90% of BSA relative to 25% for pure CA membrane. Furthermore, urea clearance behavior for CA/PVP membranes was 62.4% in comparison to 52% for pure CA membrane. The incorporation PVP i.e 1% by weight (Mpvp1) significantly improved the hydrophilicity, PWF, BSA rejection and urea clearance percentages of modified CA membrane for dialysis application.


2013 ◽  
Vol 575-576 ◽  
pp. 265-269 ◽  
Author(s):  
Xiu Ju Wang ◽  
Xing Jie Lu ◽  
Wei Ying Xu ◽  
Jia Chen Zhu ◽  
Li Guo Wang

The 2-thiol benzothiazole was blended in Polyvinylidene fluoride (PVDF) membrane to prepare a kind of PVDF modified ultrafiltration membrane that could be used to remove mercury ion in water treatment. The water flux and retention rate of BSA of obtained PVDF modified ultrafiltration membrane was 222 L/m2·h and 92.33% respectively. The membrane performance were characterized by infrared spectroscopy (FT-IR) and water contact angle measurement. The results showed that, the PVDF modified membrane presented better adsorption ability for mercury ion than the traditional PVDF membrane. After 4 phases of adsorption/desorption, the modified membrane maintained a mercury ion adsorption amount of 0.264 mg/cm2and the desorption rate could reached 94%.


Author(s):  
N. S. M. Sabri ◽  
H. Hasbullah ◽  
N. Said ◽  
N. Ibrahim ◽  
R. M. Kasmani ◽  
...  

Hydrophilicity property of membrane is a crucial feature in preventing fouling by most organic components including proteins. In this work, two different metal oxide nanoparticles were selected and their effects on hydrophilicity of polysulfone (PSf) flat sheet membrane for ultrafiltration were investigated. Addition of copper oxide (CuO) and iron oxide (Fe2O3) of 0.25 wt% concentration in N-methyl-2-pyrrolidone (NMP) were also compared to a neat PSf membrane. The membranes were prepared via dry-wet phase inversion technique with 18 wt% of PSf with 5 wt% polyvinylpyrrolidone (PVP). The physical and chemical properties of the prepared membranes were observed by contact angle measurements, porosity, average pore size and scanning electron microscope (SEM). The membranes permeation performance was also examined in term of pure water flux (PWF) and protein rejection by using bovine serum albumin (BSA) solution. Contact angle value of CuO/PSf obtained was 67.1° that was lower than the neat PSf membrane of 87.9° whereas 68.1° for Fe2O3/PSf indicating that metal oxides addition did enhance the membrane hydrophilicity with CuO was slightly better than Fe2O3. The reduction in contact angle ensured that the pure water flux through the membrane with metal oxide additive would improve as well. For CuO, the PWF increased to 159.3 Lm-2hr-1 from 81.3 Lm-2hr-1 of neat PSf, while Fe2O3 showed the PWF at 93.4 Lm-2hr-1. Morphological analyses displayed asymmetric membranes with narrow finger-like structure were formed in this study. A well-formed dense top layer indicated that the membrane would possess good BSA rejection property with 92% of rejection achieved by CuO/PSf membrane. The incorporation of nanoparticles with the membrane is proven to be an effective mean to increase the membrane hydrophilicity with improved water flux and BSA rejection.


Membranes ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 932
Author(s):  
Dalong Li ◽  
Changlu Gao ◽  
Xinyue Wang ◽  
Gang Wu ◽  
Jinghua Yin ◽  
...  

Membrane fouling has been one of the most important challenges in membrane separation operations. In this study, we report a facile strategy to prepare antifouling polysulfone (PSf) UF membranes by blending amphiphilic zwitterion polysulfone-co-sulfobetaine polysulfone (PSf-co-SBPSf) copolymer. The copolymer chemical structure was characterized by 1HNMR spectroscopy. The PSf/PSf-co-SBPSf blend membranes with various zwitterionic SBPSf segment contents exhibited better surface hydrophilicity and excellent antifouling ability compared to PSf and PSf/PEG membranes. The significant increase of both porosity and water permeance indicates that the PSf-co-SBPSf has a pore-forming effect. The pure water flux and flux recovery ratio of the PSf/PSf-co-SBPSf blend membranes were both remarked to improve 286.43 L/m2h and 92.26%, while bovine serum albumin (BSA) rejection remained at a high level (97.66%). More importantly, the water flux and BSA rejection see minimal variance after heat treatment, indicating excellent thermostability. Overall, the PSf/PSf-co-SBPSf blend membranes achieved a comprehensive performance of sustainable hydrophilic, high permeation flux, and remarkable antifouling ability, thus becoming a promising candidate in high-temperature separation application.


2013 ◽  
Vol 65 (4) ◽  
Author(s):  
Nurul Nabilah Aminudin ◽  
Hatijah Basri ◽  
Zawati Harun ◽  
Muhamad Zaini Yunos ◽  
Goh Pei Sean

PSf flat sheet membrane was prepared via phase inversion technique with N-methyl-2-pyrroidone (NMP) as solvent. In this study polyethylene glycol (PEG) and polyvinylpyrollidone (PVP) were compared as additives at different composition (0.5 wt%, 1 wt%, 3 wt% and 5 wt%). The structure and morphology of the resulting membranes were observed by scanning electron microscope (SEM) and the membranes permeation were evaluated in terms of pure water flux (PWF) and solute rejection. Solution of bovine serum albumin (BSA) was used to study the performance of prepared membrane. The addition of the additives into the casting solution changed the structure of the resultant membranes, which was believed to be associated with the change the permeated of water. The results demonstrated that at the same additive content, PSf/PVP membranes had higher PWF at 0.5 wt% and and 5 wt% of additive while PSf/PEG at 1 wt% and 3 wt% of additive. The BSA rejection show no significant changes for PSf/PEG while PSf/PVP, BSA rejection decrease with increase the increasing the PVP. For PEG, additive from 0% to 5%, the PWF increased from 14.73 at to 101.85 LMH. While for PVP, the PWF increased from 21.13 to 177.61 LMH. The membrane morphology showed that all images showed the membranes were having asymmetric structure consisting of a dense top layer, a porous sublayer, and a small portion of sponge-like bottom layer. The top layer of the membrane consist of finger-like structure while at bottom layer  has macrovoid structure. With increasing the additive, the finger-like structure become longer to the bottom  and macrovoid become smaller. The study found that PEG gives the optimum performance based on the result of rejection and flux permeation.


2020 ◽  
pp. 095400832095285
Author(s):  
Qifeng Liu ◽  
Yunhui Li ◽  
Honghua Wang ◽  
Ying Gao ◽  
Xingdi Zhang ◽  
...  

A series of phenolphthalein polyethersulfones, containing varying contents of carboxyl groups, were synthesized via SN2 nucleophilic reaction. Structure of the prepared copolymers was confirmed by 1H NMR and FTIR. The phenolphthalein polyethersulfone comprising carboxyl groups exhibited excellent hydrophilicity and mechanical properties in the fabrication of ultrafiltration membrane. The properties of the membrane were measured using scanning electron microscopy and ultrafiltration membrane evaluator. The membrane showed superior ultrafiltration performance with a pure water flux of 399 (L·m−2·h−1), which was 1.9 times higher than that of the pristine phenolphthalein polyethersulfone. The pure water flux of the membrane with the pore-forming agent Tween 80 was up to 1082 (L·m−2·h−1), and its BSA rejection was up to 97% at 0.1 MPa. This work provided a new resin material with better performance for water treatment membrane.


2014 ◽  
Vol 69 (9) ◽  
Author(s):  
Kanungnuch Keawsupsak ◽  
Arisa Jaiyu ◽  
Julaluk Pannoi ◽  
Punthinee Somwongsa ◽  
Nopparat Wanthausk ◽  
...  

Biodegradable polymers have been more attractive for membrane materials, especially poly(lactic acid) (PLA) because they degrade in natural environment after use. In this study, the membranes were developed from a polymer blend of PLA and other biodegradable polymers, such as poly(butylene succinate) (PBS), poly(butylene adipate-co-terphthalate) (PBAT) and Poly(3-hydroxybutyrate-co-3-hydroxyvalerate) (PHBV). The membranes were formed via nonsolvent induced phase separation process using n-methyl-2-pyrrolidone (NMP) as a solvent and water as a nonsolvent. The pure water flux and BSA rejection were tested to determine the filtration performance of membranes. The microstructures and tensile strength of membranes were characterized by field emission scanning electron microscope (FE-SEM) and universal testing machine (UTM), respectively. All of membranes appeared finger-like and sponge-like structures in cross-section, and porous structure on surface. PLA/PHBV blend membranes had pure water flux and BSA rejection as high as PLA/PBS and PLA/PBAT blend membranes. The pure water flux and BSA rejection of the blend ratio (PLA/PHBV/NMP) of 15:1:84 were 65 l/m2•h and 79%, respectively.


Sign in / Sign up

Export Citation Format

Share Document