Design and Fabrication of a Robotic Arm for Material Handling

2005 ◽  
Vol 2 (2) ◽  
pp. 61
Author(s):  
P Nageswara Rao ◽  
Anuar Ahmad ◽  
Abdul Rahman Omar ◽  
Muhammad Azmi Ayub

The commercial robots are expensive for use in the educational institutions. The operation of them will not leave room for experimentation, which is necessary in an educational institution. Further a large number of components that can be used for building a robot are readily available in the market. Hence this project has been taken up to allow us to build a working robot using as many of the off the shelf components to provide the necessary flexibility. This would make it a low cost robot with enough flexibility for the students to experiment the various functions of the robot.The mechanical component of the manipulator was built with three degrees of freedom, one revolute and two prismatic joints. This configuration is most common to be used as a material-handling device for machine tools. The revolute joint was achieved by making use of a pneumatic rotary table and one prismatic joint is realized by means of a pneumatic cylinder. The second prismatic joint in the Z-direction is achieved by the use of an AC servomotor with a ball screw and linear motion elements to provide for accurate positioning capability. The gripper had been designed for cylindrical components, since this robot was conceived as a material handling unit for a CNC turning center. All the necessary design calculations had been done and the finite element analysis was carried out for the main structure. The control system of the robot was one of the crucial elements. A PC is used as a controller. The motion control was carried out with the help of a motion control card DC2-PC100. It had the ability to control 2 servo and 2 stepper motors in addition to other digital and analogue controls. Several types of sensors and actuators were used for the robot to be fully automatic. The signal conditioning circuitry was designed in house for the interfacing between sensors, actuators and controllers. The control algorithm was developed with the necessary functioning to coordinate all the joint movement as well as gripper manipulation.

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Guiyue Kou ◽  
Mouyou Lin ◽  
Changbao Chu

In the MEMS optical switch assembly, the collision is likely to happen between the optical fiber and the U-groove of the chip due to the uncontrollable assembly errors. However, these errors can hardly be completely eliminated by the active control using high precision sensors and actuators. It will cause the large acting force and part damage, which further leads to the assembly failure. To solve this question, this paper presents a novel low-cost three-degree-of-freedom (three-DOF) passive flexure system to adaptively eliminate the planar assembly errors. The flexure system adopts three parallel kinematic chains with a novel 3-RPR structure and has a compact size with a diameter of 125 mm and thickness of 12 mm. A novel eddy current damper with the structure of Halbach array permanent magnets (PMs) is utilized to suppress the adverse mechanical vibration of the assembly system from the background disturbances. Analytical models are established to analyze the kinematic, static, and dynamic performances of the system in detail. Finally, finite element analysis is adopted to verify the established models for optimum design. The flexure system can generate a large deformation of 1.02 mm along the two translational directions and 0.02° along the rotational direction below the yield state of the material, and it has much higher natural frequencies than 200 Hz. Moreover, the large damping force means that the designed ECD can suppress the system vibration quickly. The above results indicate the excellent characteristics of the assembly system that will be applied into the optical switch assembly.


Author(s):  
Nor Aiman Sukindar ◽  
Azib Azhari Awang Dahan ◽  
Sharifah Imihezri Syed Shaharuddin ◽  
Nor Farah Huda Abd Halim

Abstract Fused Deposition Modelling (FDM) is an additive manufacturing (AM) process that produces a physical object directly from a CAD design using layer-by-layer deposition of the filament material that is extruded via a nozzle. In industry, FDM has become one of the most used AM processes for the production of low batch quantity and functional prototypes, due to its safety, efficiency, reliability, low cost, and ability to process manufacturing-grade engineering thermoplastic. Recently, the market is flooded with the availability of low-cost printers produced by numerous companies. This research aims to investigate the effect of different porosity levels on a scaffold structure produced using a low-cost 3D printer. Comparisons of these porous structures were made in terms of Von-Mises strain, total deformation, as well as compressive stress. Various porosity levels were created by varying printing parameters, including layer height, infill density, and shell thickness by slicing the initial solid CAD file using Repetier Host 3D printing software. Finite Element Analysis (FEA) simulation was then performed on the created scaffold structures by using Ansys Workbench 19.2. The simulation result indicates that the greater porosity level will result in higher total deformation of the structure. Meanwhile, the compression test shows that the minimum strength value obtained was favourable at 22 MPa and had exceeded that of the trabecular femur (15 MPa). However, its porosity level (maximum at 52%) was still below that of the minimum threshold of porosity level of 70 percent. However, the printing parameters currently used can be adjusted in the future. Therefore, it was deduced that the low-cost 3D printer offers promising potential to fabricate different porosity structures with multiple outcomes.


2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Celal Çakıroğlu ◽  
Gebrail Bekdaş

In the recent years natural fiber reinforced composites are increasingly receiving attention from the researchers and engineers due to their mechanical properties comparable to the conventional synthetic fibers and due to their ease of preparation, low cost and density, eco-friendliness and bio-degradability. Natural fibers such as kenaf or flux are being considered as a viable replacement for glass, aramid or carbon. Extensive experimental studies have been carried out to determine the mechanical behavior of different natural fiber types such as the elastic modulus, tensile strength, flexural strength and the Poisson’s ratio. This paper presents a review of the various experimental studies in the field of fiber reinforced composites while summarizing the research outcome about the elastic properties of the major types of natural fiber reinforced composites. Furthermore, the performance of a kenaf reinforced composite plate is demonstrated using finite element analysis and results are compared to a glass fiber reinforced laminated composite plate.


Author(s):  
ELIEL EDUARDO MONTIJO-VALENZUELA ◽  
SAUL DANIEL DURAN-JIMENEZ ◽  
LUIS ALBERTO ALTAMIRANO-RÍOS ◽  
JOSÉ ISAEL PÉREZ-GÓMEZ ◽  
OSCAR SALMÓN-AROCHI

The objective of this research is to manufacture a prototype of a teaching die for the specialty of precision mechanical design in mechatronic engineering, in order to achieve the skills required in unit two, regarding dies. The methodology used consists of five stages: 1. Definition of the preliminary conditions. 2. Theoretical calculations for die design. 3. Design, modeling and assembly using computer-aided software (CAD) of the parts that make up the die. 4. Validation with simulation of finite element analysis (AEF). 5. Manufacture of parts and physical assembly of the die. A functional prototype was obtained with which the teacher and student can perform calculations, designs and CAD models, AEF analysis of the static and fatigue type, manufacture of rapid prototypes using 3D printing, the identification of the parts that make up a die and their functioning. The advantage of this prototype, compared to metal die-cutting machines, is its low cost of production and manufacturing, it does not require expensive and specialized machinery for manufacturing, specific designs can be made by the students and its subsequent manufacture within the laboratories of the Technological Institute of Hermosillo.


2012 ◽  
Vol 18 (12) ◽  
pp. 1079-1085
Author(s):  
Sang-Chan Moon ◽  
Jae-Jun Kim ◽  
Kyu-Min Nam ◽  
Byoung-Soo Kim ◽  
Soon-Geul Lee

Author(s):  
Monica Subashini M ◽  
Sreethul Das ◽  
Soumil Heble ◽  
Utkarsh Raj ◽  
R Karthik

<p>About 10% of the world’s workforce is directly dependent on agriculture for income and about 99% of food consumed by humans comes from farming. Agriculture is highly climate dependent and with global warming and rapidly changing weather it has become necessary to closely monitor the environment of growing crops for maximizing output as well as increasing food security while minimizing resource usage. In this study, we developed a low cost system which will monitor the temperature, humidity, light intensity and soil moisture of crops and send it to an online server for storage and analysis, based on this data the system can control actuators to control the growth parameters. The three tier system architecture consists of sensors and actuators on the lower level followed by an 8-bit AVR microcontroller which is used for data acquisition and processing topped by an ESP8266 Wi-Fi module which communicates with the internet server. The system uses relay to control actuators such as pumps to irrigate the fields; online weather data is used to optimize the irrigation cycles. The prototyped system was subject to several tests, the experimental results express the systems reliability and accuracy which accentuate its feasibility in real-world applications.</p>


2018 ◽  
Vol 4 (11) ◽  
pp. 2667
Author(s):  
Hayder Fadhil ◽  
Amer Ibrahim ◽  
Mohammed Mahmood

Corrugated steel plate shear wall (CSPSW) is one of the lateral resistance systems which consists mainly of steel frame (beam and column) with vertical or horizontal corrugated steel plate connected to the frame by weld, bolts or both. This type of steel shear wall characterized by low cost and short construction time with high strength, ductility, initial stiffness and excellent ability to dissipate energy. The aim of this paper is to evaluate the effect of corrugation angle and its direction on the performance of CSPSW under cyclic loading. The Finite element analysis was employed to achieve the research aim. The FE models were validated with experimental data available in the literature. Results reveal that the corrugation angle has a clear influence on initial stiffness, strength, ductility, and energy dissipation of CSPSW. The optimum performance of CSPSW can be obtained with angles of 30o for CSPSW with vertical corrugation and 20o for CSPSW with horizontal corrugation. The use of CSPSW with vertical corrugation provides higher strength, stiffness, and ductility compared to CSPSW with horizontal corrugation. Therefore, it is recommended to use CSPSW with vertical corrugation.


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Sign in / Sign up

Export Citation Format

Share Document