scholarly journals Recognition of Minerals Using Multispectral Remote Sensing Data: A Case Study in the Sultanate of Oman

Author(s):  
Sankaran Rajendran ◽  
Sobhi Nasir

The present study demonstrates the capability of a multispectral sensor for the detection of the minerals in the rocks surrounding the Rusayl and Al Jafnayn regions, Sultanate of Oman. The study of spectral absorptions of rocks and minerals in the visible and near infrared (VNIR) and short wavelength infrared (SWIR) spectral bands of the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) using the Spectral Angle Mapper (SAM) supervised image classification technique has provided information on the occurrence of minerals in the rock types of the regions. The study shows the occurrence of carbonate minerals in the limestone formations and of poorly altered silicate minerals in the basic dyke rocks of the study regions. The analysis of minerals over the ancient terraces and recent alluvial deposits show that the deposit materials are derived from the dykes and foliated gabbro source rocks. The image interpretation is compared to the geological map, verified in the field and confirmed through laboratory analyses. The satellite data and the image processing techniques used have potential in the recognition of minerals in the rocks of the study region and could be used in similar arid regions elsewhere in the world.  

Author(s):  
Kazem Rangzan ◽  
Somayeh Beyranvand ◽  
Hoshang Pourkaseb ◽  
Hojjatollah Ranjbar ◽  
Alireza Zarasvandi

An extensive series of volcanic rocks are exposed in the north of Saveh city, Iran, which consist of phyllic, argillic and propylitic hydrothermal alteration types. For the purpose of the investigation, a FieldSpec3® spectroradiometer was used to measure the spectral response of the mineral content of these rocks. The spectral analyses of reflectance curve by The Spectral Geologist (TSG) software could discriminate kaolinite and montmorillonite (argillic), illite, muscovite, phengite and paragonite (phyllic), hornblende and chlorite, siderite (propylitic), hematite and goethite from the gossans. It also detected gypsum of hydrothermal alteration zones. The Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER) image, which was used for mapping the hydrothermal alteration minerals, contains the Visible and Near Infrared (VNIR) wavelengths between 0.52 µm and 0.86 µm, Short Wave Infrared (SWIR) wavelengths between 1.6 µm and 2.43 µm and Thermal Infrared (TIR) wavelengths between 8.125 µm and 11.65 µm with 15, 30 and 90 m spatial resolutions, respectively. For calibration of the ASTER images, the extracted spectra of different rocks and minerals were used for atmospheric and radiometric corrections. Mixture tuned matched filtering (MTMF) and Spectral Angle Mapper (SAM) were applied on ASTER data to map the hydrothermal alteration of minerals. The use of the spectroradiometry techniques in conjunction with other data exhibits the ability of these new methods for non-destructive and rapid identification of mineral types for more detailed investigation. The results show that the area has undergone different levels of hydrothermal alteration, so much so that phyllic, argillic and propylitic types of hydrothermal alteration are present in the study area. This may point to high potential and promising zones for the exploration of porphyry mineralisation.


2018 ◽  
Vol 8 (2) ◽  
pp. 47
Author(s):  
Enton Bedini

Remote sensing data acquired by the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) were used for mineral and lithologic mapping at the Sarfartoq carbonatite complex area in southern West Greenland. The geology of the study area consists of carbonatites, fenites, hydrothermal alteration zones, gneisses, alluvial deposits etc. The Adaptive Coherence Estimator algorithm was used to analyze the remote sensing data. The reference spectra were selected from the imagery. The mapping results show the distribution of carbonatite, hydrothermally altered zones, fenite, and sericite. In addition, lichen and tundra green vegetation were also mapped.  Due to the moderate spatial resolution of ASTER SWIR bands, it was not possible to detect and map the rock units in some parts of the study area. The study shows the possibilities and limitations of the use of the ASTER multispectral imagery for geological studies in the Arctic regions of West Greenland. The paper is the first reported study on the use of ASTER data for mineral and lithologic mapping in the Arctic regions of West Greenland. 


Author(s):  
A. Guha ◽  
K. Vinod Kumar

In the present study, different temperature-emissivity separation algorithms were used to derive emissivity images based on processing of ASTER( Advanced spaceborne thermal emission and reflection radiometer) thermal bands. These emissivity images have been compared with each other in terms of geological information for mapping of major rock types in Hutti Maski schist Belt and its associated granitoids. Thermal emissivity images are analyzed conjugately with thermal radiance image, radiant temperature image and albedo image of ASTER bands to understand the potential of thermal emissivity in delineating different rock types of Archaean Greenstone belt. The emissivity images derived using different emissivity extraction algorithms are characterised with poor data dimensionality and signal to noise ratio. Therefore, Inverse MNF false-colour composites(FCC) are derived using bands having better signal to noise(SNR)ratio to enhance the contrast in emissivity. It has been observed that inverse-MNF of emissivity image; which is derived using emissivity-normalisation method is suitable for delineating silica variations in granite and granodioritic gneiss in comparison to other inverse- MNF-emissivity composites derived using other emissivity extraction algorithms(reference channel and alpha residual method). Based on the analysis of ASTER derived emissivity spectra of each rocks, band ratios are derived(band 14/12,band 10/12) and these ratios are used to delineate the rock types based on index based FCC image. This FCC image can be used to delineate granitoids with different silica content. The geological information derived based on processing of ASTER thermal images are further compared with the image analysis products derived using ASTER visible-near-infrared(VNIR) and shortwave infrared(SWIR) bands. It has been observed that delineation of different mafic rocks or greenstone rocks(i.e. separation between chlorite schist and metabasalt) are better in SWIR composites and these composites also provide comparable results with thermal bands in terms of delineation of different types of granitoids.


2012 ◽  
Vol 32 (5) ◽  
pp. 932-943 ◽  
Author(s):  
Hugo A. S. Guedes ◽  
Demetrius D. da Silva

The aim of this study was to compare the hydrographically conditioned digital elevation models (HCDEMs) generated from data of VNIR (Visible Near Infrared) sensor of ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer), of SRTM (Shuttle Radar Topography Mission) and topographical maps from IBGE in a scale of 1:50,000, processed in the Geographical Information System (GIS), aiming the morphometric characterization of watersheds. It was taken as basis the Sub-basin of São Bartolomeu River, obtaining morphometric characteristics from HCDEMs. Root Mean Square Error (RMSE) and cross validation were the statistics indexes used to evaluate the quality of HCDEMs. The percentage differences in the morphometric parameters obtained from these three different data sets were less than 10%, except for the mean slope (21%). In general, it was observed a good agreement between HCDEMs generated from remote sensing data and IBGE maps. The result of HCDEM ASTER was slightly higher than that from HCDEM SRTM. The HCDEM ASTER was more accurate than the HCDEM SRTM in basins with high altitudes and rugged terrain, by presenting frequency altimetry nearest to HCDEM IBGE, considered standard in this study.


CERNE ◽  
2013 ◽  
Vol 19 (1) ◽  
pp. 103-110 ◽  
Author(s):  
Eva Sevillano-Marco ◽  
Alfonso Fernández-Manso ◽  
Carmen Quintano ◽  
Marcela Poulain

A Chinese-Brazilian Earth Resources Satellite (CBERS) and an Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) scenes coupled with ancillary georeferenced data and field survey were employed to examine the potential of the remote sensing data in stand basal area, volume and aboveground biomass assessment over large areas of Pinus radiata D. Don plantations in Northwestern Spain. Statistical analysis proved that the near infrared band and the shade fraction image showed significant correlation coefficients with all stand variables considered. Predictive models were accordingly selected and utilized to undertake the spatial distribution of stand variables in radiata stands delimited by the National Forestry Map. The study reinforces the potentiality of remote sensing techniques in a cost-effective assessment of forest systems.


Author(s):  
Gustavo Manzon Nunes ◽  
Carlos Roberto De Souza Filho ◽  
Laerte Guimarães Ferreira ◽  
Luiz Eduardo Vicente ◽  
Maricéia Tatiana Vilani

Este artigo pretende avaliar a capacidade dos dados gerados pelo sensor Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)/Terra, na discriminação de fitofisionomias existentes na Reserva de Desenvolvimento Sustentável Amanã (RDSA). Os dados ASTER analisados incluem os intervalos espectrais do visível (0.52-0.69 μm), infravermelho próximo (0.78-0.86 μm) e infravermelho de ondas curtas (1.60 a 2.43 μm), sendo que nas bandas destes intervalos foram aplicadas técnicas de classificação espectral adaptadas para os dados deste sensor como Spectral Angle Mapper (SAM), Mixture Tuned Matched Filtering (MTMF), além do NDVI. Através da técnica SAM foi possível a discriminação de seis fitofisionomias predominantes na RDSA. Através da técnica MTMF, que envolve um algoritmo de classificação mais robusto, informações equivalentes foram obtidas. Foi possível ainda a associação e detecção dos padrões espectrais da cobertura vegetal, mostrando a estreita relação com o índice NDVI. Palavras-chave: Mapeamento. Reserva de Desenvolvimento Sustentável Amanã. Vegetação.  Abstract This article aims to evaluate the data capacity created by a sensor named Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER)/Terra, in the phytophysiognomies description of Amanã Sustainable Development Reserve (RDSA). The ASTER data analyzed include the spectral intervals of visible (0.52-0.69 μm), near-infrared (0.78-0.86 μm) and shortwave infrared (1.60 to 2:43 μm), wherein these intervals bands were applied the spectral classification techniques adapted to the data from this sensor as Spectral Angle Mapper (SAM), Mixture Tuned Matched Filtering (MTMF) plus NDVI. By SAM technique was possible to distinguish six predominant phytophysiognomies in the RDSA. By MTMF technique that involves a more robust classification algorithm, equivalent information was obtained. It was also possible to associate and detect spectral patterns of vegetation, showing the close relationship with the NDVI index. Keywords: Amanã Sustainable Development Reserve. Mapping. Vegetation. 


2017 ◽  
Vol 33 (2) ◽  
pp. 255-274 ◽  
Author(s):  
Azam Soltaninejad ◽  
Hojjatollah Ranjbar ◽  
Mehdi Honarmand ◽  
Sara Dargahi

2021 ◽  
Vol 13 (3) ◽  
pp. 536
Author(s):  
Eve Laroche-Pinel ◽  
Mohanad Albughdadi ◽  
Sylvie Duthoit ◽  
Véronique Chéret ◽  
Jacques Rousseau ◽  
...  

The main challenge encountered by Mediterranean winegrowers is water management. Indeed, with climate change, drought events are becoming more intense each year, dragging the yield down. Moreover, the quality of the vineyards is affected and the level of alcohol increases. Remote sensing data are a potential solution to measure water status in vineyards. However, important questions are still open such as which spectral, spatial, and temporal scales are adapted to achieve the latter. This study aims at using hyperspectral measurements to investigate the spectral scale adapted to measure their water status. The final objective is to find out whether it would be possible to monitor the vine water status with the spectral bands available in multispectral satellites such as Sentinel-2. Four Mediterranean vine plots with three grape varieties and different water status management systems are considered for the analysis. Results show the main significant domains related to vine water status (Short Wave Infrared, Near Infrared, and Red-Edge) and the best vegetation indices that combine these domains. These results give some promising perspectives to monitor vine water status.


2021 ◽  
Vol 13 (10) ◽  
pp. 5518
Author(s):  
Honglyun Park ◽  
Jaewan Choi

Worldview-3 satellite imagery provides panchromatic images with a high spatial resolution and visible near infrared (VNIR) and shortwave infrared (SWIR) bands with a low spatial resolution. These images can be used for various applications such as environmental analysis, urban monitoring and surveying for sustainability. In this study, mineral detection was performed using Worldview-3 satellite imagery. A pansharpening technique was applied to the spatial resolution of the panchromatic image to effectively utilize the VNIR and SWIR bands of Worldview-3 satellite imagery. The following representative similarity analysis techniques were implemented for the mineral detection: the spectral angle mapper (SAM), spectral information divergence (SID) and the normalized spectral similarity score (NS3). In addition, pixels that could be estimated to indicate minerals were calculated by applying an empirical threshold to each similarity analysis result. A majority voting technique was applied to the results of each similarity analysis and pixels estimated to indicate minerals were finally selected. The results of each similarity analysis were compared to evaluate the accuracy of the proposed methods. From that comparison, it could be confirmed that false negative and false positive rates decreased when the methods proposed in the present study were applied.


Land ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 339
Author(s):  
Jiancheng Lu ◽  
Xiaolong Luo ◽  
Ningning Yang ◽  
Yang Shen

Greenspace exposure (GSE) may have a positive impact on mental health. However, existing research lacks a classification analysis of the influence pathways of different GSE on mental health. Meanwhile, the research method is limited to the measurement of the green space ratio (GSR) based on remote sensing data, which ignores people’s real perception of greenspace. This paper aims to further expand the measurement method of GSE, taking Hangzhou, China as an example, and to reveal the influence mechanism of different GSE modes on mental health. We obtained the personal information, mental health, physical activity, and other data of the interviewees through a questionnaire (n = 461). Combined with a remote sensing satellite and the Baidu Street view database, the method of image interpretation and deep learning was used to obtain the GSR, green visual ratio (GVR), and green visual exposure (GVE). The structural equation model is used to analyze the relationship between different variables. The results showed that: (1) GSE has a certain positive effect on mental health; (2) there are differences in the influence mechanism of multiple measures of GSE on mental health—the GVR and GVE measures based on the interaction perspective between human and greenspace make the influence mechanism more complicated, and produce direct and indirect influence paths; and (3) greenspace perception, sense of community, and physical activity can act as mediators, and have indirect effects. Finally, we call for expanding the measurement index and methods of GSE and integrating them into the management and control practices of urban planning to promote the healthy development of communities and even cities.


Sign in / Sign up

Export Citation Format

Share Document