scholarly journals Sustainable products in the leather industry

2020 ◽  
Author(s):  
Olga Ballus ◽  
Anna Bacardit

Protecting the environment is one of the three objectives of sustainability. One way to achieve this is to preserve natural resources by using renewable or residual raw materials. These products have a shorter lifespan and a lower carbon footprint, are highly biodegradable, and are therefore considered to be sustainable products. In this paper, three retanning agents and two oils classified as sustainable products were studied. First, biobased carbon content (an indicator of renewable raw material content) was determined. Then, the physical and organoleptic properties of the leathers treated with each product (degree of softness, firmness and fullness) were evaluated. The COD of residual baths was also determined in oils. The products presented in this paper meet the sustainability requirements, i.e., high renewable raw material content, short lifespan, and low carbon footprint. In addition, these products show high fixation and therefore have a low COD in residual baths, thus also contributing to their sustainability.

Author(s):  
Andi Budirohmi

Polyuretanes are widely used as elastomers, coatings, adhesivesand binders,interior and exterior cars, furniture,shoe soles, carpets, rigit and flexible foams, membrane materials as well as constuction materials .The production of polyurethanes is largely derived  from  polyols derived from petroleum . Howover, petroleum  is a non- renewable raw material . Thus it is necessary to look alternative feedstock  for the manufacture of polyol  as a polyurethane raw material. Synnthesis polyurethane by polymerization process  using  polyol volume based on polyol  oleat acid  polypropylenglycol ( PPG ) in order to know  whether fatty acid can be used  as raw materials  of polyurethane manufacture.From the result of the study. Based on Fourier Transform Infra  Red ( FTIR), showed,that the product  produced is polyol with obtained hydroxyl  group ( OH group )with hydroxylnumber is 129,81 mg KOH / g and 157,60 mg KOH / g sample of 70 


2020 ◽  
Vol 1 (3) ◽  
pp. 256-274
Author(s):  
H. N. Cheng ◽  
Zhongqi He ◽  
Catrina Ford ◽  
Wade Wyckoff ◽  
Qinglin Wu

There has been increasing interest in recent years in the use of agro-based raw materials for the production of bio-friendly and sustainable products. Plant-based proteins are among the popular materials being studied. In particular, cottonseed protein (a byproduct of cotton fiber production) is widely available and has useful properties. Although not as well-known as soy protein, cottonseed protein has been shown to be a potentially valuable raw material for numerous applications. In this review, the latest developments in isolation, composition and molecular weight, chemical and enzymatic modifications, and non-food applications are delineated. Among these applications, films and coatings, interfacial and emulsifying applications, adhesives, and bioplastics seem to attract the most attention. A particular effort has been made to cover the literature on these topics in the past 10 years.


2020 ◽  
Author(s):  
Katarina Šter ◽  
Sabina Kramar

<p>Al-rich mineral resources are one of the essential components for the production of the novel sustainable mineral binders. Belite-sulfoaluminate (BCSA) cements, which are considered as low-carbon and low-energy, allows the substitution of natural raw materials with secondary ones. In East-Southeast European countries (ESEE) there are huge amounts of various industrial and mine residues that are either landfilled or currently have a low recycling rate. These residues are generated from mining activities (mine waste) and as a by product of different types of industry, such as thermal power plants, steel plants or the aluminium industry (slags, ashes, red mud, etc.). Within the framework of the RIS-ALiCE project, in cooperation with 15 project partners from Slovenia, Austria, France, Hungary, Serbia, Bosnia and Herzegovina and Macedonia, a network of relevant stakeholders has been established in the field of currently unused aluminium-containing mine and industrial residues. Inside the created network mine and industrial residues have been mapped and valorised in order to evaluate their suitability for the use in innovative and sustainable low CO<sub>2</sub>-mineral binder production. Aluminium-containing residues are characterized with respect to their chemical, physical and radiological composition using different analytical methods such as X ray fluorescence spectroscopy, ICP optical emission spectrophotometry, gravimetry, X ray powder diffraction, gamma spectroscopy, etc. The long-term activity of network between wastes holders/producers and mineral end users will be enabled via developed Al-rich residues registry, including a study of the potential technological, economic and environmental impacts of applying the innovative methodology of the sustainable secondary raw materials management in ESEE region. Developed registry with the data valuable for both, waste providers as waste users in ESEE region, can be later-on upscaled also to other regions of Europe. It will provide the data on the available and appropriate Al-rich secondary resources, which will enablethe production of innovative low-CO<sub>2 </sub>cements.</p><p><strong>Keywords:</strong> secondary raw material, alternative binders, Al-rich residues, networking, mapping, valorisation, registry.</p>


2019 ◽  
pp. 403-411
Author(s):  
Olga Babich ◽  
Olga Krieger ◽  
Evgeny Chupakhin ◽  
Oksana Kozlova

The increasing shortage of fossil hydrocarbon fuel dictates the need to search for and develop alternative energy sources, including plant biomass. This paper is devoted to the study of the Miscanthus plants biomass potential and the analysis of technologies of its processing into products targeted at bioenergy, chemistry, and microbiology. Miscanthus is a promising renewable raw material to replace wood raw materials for the production of chemical, fuel, energy, and microbiological industries. Miscanthus is characterised by highly productive (up to 40 tons per one hectare of dry matter) C4-photosynthesis. Dry Miscanthus contains 47.1–49.7% carbon, 5.38–5.92% hydrogen, and 41.4–44.6% oxygen. The mineral composition includes K, Cl, N and S, which influence the processes occurring during biomass combustion. The total amount of extractives per dry substance lies in the range of 0.3–2.2 % for different extraction reagents. Miscanthus has optimal properties as an energy source. Miscanthus × giganteus pellets showed the energy value of about 29 kJ/g. For the bioconversion of plants into bioethanol, it is advisable to carry out simultaneous saccharification and fermentation, thus reducing the duration of process steps and energy costs. Miscanthus cellulose is of high quality and can be used for the synthesis of new products. Further research will focus on the selection of rational parameters for processing miscanthus biomass into products with improved physical and chemical characteristics: bioethanol, pellets, industrial cellulose, bacterial cellulose, carbohydrate substrate.


2020 ◽  
Vol 5 (13) ◽  
pp. 157
Author(s):  
Rohana Sham ◽  
Razifah Othman ◽  
Ho Hui Yee ◽  
Tan Yi Han

Walking has significantly contributed to a lower carbon emission of a country. With the aspiration of a lesser carbon footprint zone, the initiatives of understanding the current pedestrian system are crucial. Although walking improves green mobility, it is still known as the least preferred mode. Thus, this study aims to improve pedestrian walkways and promote a higher level of usage of pedestrian walkways by analyzing the critical factors contributing to the lower carbon footprint among the urban dwellers. The results will help to improve a lower carbon footprint practice in the metropolitan area.Keywords: Pedestrian,Friendly,Low Carbon,SatisfactioneISSN: 2398-4287 © 2020. The Authors. Published for AMER ABRA cE-Bs by e-International Publishing House, Ltd., UK. This is an open access article under the CC BYNC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). Peer–review under responsibility of AMER (Association of Malaysian Environment-Behaviour Researchers), ABRA (Association of Behavioural Researchers on Asians) and cE-Bs (Centre for Environment-Behaviour Studies), Faculty of Architecture, Planning & Surveying, Universiti Teknologi MARA, Malaysia.DOI: https://doi.org/10.21834/e-bpj.v5i13.1982


2014 ◽  
Vol 1001 ◽  
pp. 368-372
Author(s):  
Miroslava Netopilová ◽  
Jan Mikulenka ◽  
Anna Benešová

The article focuses on the research and development of a new composite material applicable in building industry, renewable raw material resources and industrial waste materials. The aim of the research is not only the application of concrete secondary raw materials but also the gaining of required safety aspects of these composite materials, i.e. certain fire technical characteristics.


Recycling ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 60
Author(s):  
Qaisar Munir ◽  
Timo Kärki

The utilization of geopolymer 3D printing for construction products in recent years has been exceptionally substantial, owing to their low carbon dioxide emissions, high-performance properties such as durability, and good thermal and mechanical properties. This automated manufacturing process reduces the need for additional formworks, capital investments, and human resources. Geopolymer 3D printing development is emerging because of its advanced use in construction applications. However, high costs of the initial stages of geopolymer production and 3D printing has inhibited the development of this technology in many countries. This research presents a comprehensive economic evaluation of the investment for each principal stage that facilitates a better deployment of the resources. The study investigated all phases of geopolymer production, from the extraction of raw materials to printing. The cost for the four fundamental stages, namely raw material availability and transportation, pretreatments for raw materials, parameter selection and strength requirements, and printing in factories and on construction sites, were analyzed. The results show that 3D printing of a geopolymer on a construction site is economically more advantageous compared to printing in the factory. The study also verified that raw material transportation cost has the least effect on the finished product cost, whereas pretreatments of raw material and mixing parameters significantly influenced the ultimate cost of the product. Finally, research work suggested the need for future tasks to make geopolymer 3D printing a viable construction approach.


2020 ◽  
Author(s):  
◽  
Aiga Ivdre

The Thesis aims to develop innovative polyols suitable for the production of rigid PU foam from recycled PET flakes and renewable raw material resources (rapeseed oil and tall oil) and to evaluate the effect of polyols on the most important properties of rigid PU foams as a thermal insulation material.


2021 ◽  
Author(s):  
R. Gaillac ◽  
S. Marbach

Meat and dairy products in the food industry represent a significant portion of anthropogenic green house gas emissions. To meet the Intergovernemental Panel on Climate Change recommendations to limit global warming, these emissions should go down. Meat and dairy products are also responsible for the majority of our daily, vital, protein intake. Yet, meat and dairy products contain very different amounts of proteins, making it difficult in general to rationalize which protein source has the lowest carbon footprint. Here we offer a practical and pedagogical review, comparing the carbon footprint of a variety of meat and dairy products with respect to their protein content. We report further on a number of consumer oriented questions (local or imported? organic or not? cow or goat milk? hard or soft cheese?). We investigate finally the carbon footprint of different dietary choices for several countries, by keeping the total number of meat and dairy proteins constant. Dairy-only diets are in general a little less carbon intensive than current diets; while up to 60% lower carbon footprint diets can be achieved by eating for only part poultry, small animals and yogurt. Our assembled data is readily available through an open source app allowing to investigate personalized dietary scenarios. We expect our results to help consumers perform enlightened carbon footprint dietary choices. Our methodology may be applied to broader questions, such as the carbon footprint of proteins in general (including fish and plant proteins). We hope our work will drive more studies focusing on consumer-oriented questions.


2012 ◽  
Vol 262 ◽  
pp. 577-580
Author(s):  
Ya Bo Fu ◽  
Wen Cai Xu ◽  
Yan Ru Jiang ◽  
Ge Zhou

The increasing concern on low carbon and environment protection has aroused a broader awareness of the sustainable development issues to be given to the environmental impacts of packaging products through the whole life cycle. The research of carbon footprint takes the high lights among these studies. The calculation of carbon emissions on commodities has shown many advantages on estimation of global greenhouse gas emissions. In this work, glass bottle liquor packaging was selected as the researching object, its equivalent carbon emissions were investigated by hybrid life cycle method. Through the carbon emissions research of the processes during the whole life cycle including raw materials’ production, packaging process, transportation, consumption and recycling, the carbon footprint on liquor packaging was calculated. The results indicated that the transportation and production of glass bottle contribute the most parts of total carbon emissions, which provides a case support for energy conservation and the development of green packaging.


Sign in / Sign up

Export Citation Format

Share Document