scholarly journals Cost Analysis of Various Factors for Geopolymer 3D Printing of Construction Products in Factories and on Construction Sites

Recycling ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 60
Author(s):  
Qaisar Munir ◽  
Timo Kärki

The utilization of geopolymer 3D printing for construction products in recent years has been exceptionally substantial, owing to their low carbon dioxide emissions, high-performance properties such as durability, and good thermal and mechanical properties. This automated manufacturing process reduces the need for additional formworks, capital investments, and human resources. Geopolymer 3D printing development is emerging because of its advanced use in construction applications. However, high costs of the initial stages of geopolymer production and 3D printing has inhibited the development of this technology in many countries. This research presents a comprehensive economic evaluation of the investment for each principal stage that facilitates a better deployment of the resources. The study investigated all phases of geopolymer production, from the extraction of raw materials to printing. The cost for the four fundamental stages, namely raw material availability and transportation, pretreatments for raw materials, parameter selection and strength requirements, and printing in factories and on construction sites, were analyzed. The results show that 3D printing of a geopolymer on a construction site is economically more advantageous compared to printing in the factory. The study also verified that raw material transportation cost has the least effect on the finished product cost, whereas pretreatments of raw material and mixing parameters significantly influenced the ultimate cost of the product. Finally, research work suggested the need for future tasks to make geopolymer 3D printing a viable construction approach.

2021 ◽  
Vol 12 (3) ◽  
pp. 111-118
Author(s):  
N. Yu. Tereshchenko ◽  
◽  
O. Yu. Kursenko ◽  
O. I. Khyzhan ◽  
O. I. Khyzhan ◽  
...  

The paper presents the methodology of preparation of samples of oilseeds, lettuce, apples for research by chromatographic control of xenobiotics of the following chemical groups of pesticides: benzimidazole derivatives, anilinopyrimidine derivatives, bipyridylium derivatives. The implementation of the following processes is considered: homogenization of the sample, purification of the extract by solid-phase or liquid-liquid extraction, obtaining a plant extract, obtaining an extract of analytes. For fine-grained homogenized samples of sunflower seeds, the optimal ratio of raw material -extragent is 1:20, for pasty homogenized samples of apple fruit - 1:10, for liquid samples of homogenized lettuce - 1: 5. Analysis of the distribution of xenobiotics in the system octane/water, the dipole moment of solvents allowed to determine the extractants that are able to dissolve and remove xenobiotics from raw materials. It was found that a mixture of acetonitrile and methanol (4: 1) should be used to remove benzimidazole derivatives and anilinopyrimidine derivatives, bipyridylium derivatives are best extracted with methanolic trifluoroacetic acid (9.5: 0.5). Quantitative analysis of xenobiotics content in extracts obtained from samples artificially enriched with xenobiotics was performed. The most complete xenobiotics were removed from samples of plant products containing traces of fat. The most difficult process of sample preparation is the process of obtaining sunflower seed extract. The content of xenobiotics in extracts obtained from samples artificially enriched in analytes is influenced by the temperature at which the process takes place and the duration of extraction. Based on the chemical composition of the sample matrix and the list of analytes, the conditions of the variable component of the methodology are proposed: obtaining plant extract under the action of selective solvents, homogenized raw material-solvent with constant stirring of the extraction system at 180-200 rpm, or under the action of ultrasonic vibrations with a frequency of 37 kHz from 4°C to 25°C for 5-25 minutes. The control of the qualitative and quantitative composition of the studied plant extracts and analyte extracts was investigated by the methods of high-performance liquid and gas chromatography (liquid and gas) with mass-selective detectors.


2009 ◽  
Vol 92 (4) ◽  
pp. 1016-1020 ◽  
Author(s):  
Sohan S Chitlange ◽  
Prajakta S Kulkarni ◽  
Dada Patil ◽  
Bhushan Patwardhan ◽  
Rabindra K Nanda

Abstract Because Ayurvedic herbal preparations contain a myriad of compounds in complex matrixes, it is difficult to establish quality control standards for raw materials and to standardize finished Ayurvedic drugs. A novel, accurate, and valid fingerprint method was developed using HPLC for quality control of a traditional Ayurvedic Arjuna churna formulation, which is used as a cardiotonic drug. Comprehensive comparison of chromatograms of standardized formulation of Arjuna churna and marketed formulations revealed eight characteristic peaks in chromatograms, which unambiguously confirmed the presence of authentic raw material used in the formulation on the basis of their retention time values and UV data. An HPLC fingerprint was also developed for total sapogenins present in Terminalia arjuna. The six common peaks observed in chromatograms of isolated sapogenins, standardized formulations, and marketed formulations can serve as a quality control tool for qualitative estimation of total saponin glycosides present in an Arjuna churna formulation.


2019 ◽  
Vol 814 ◽  
pp. 413-418
Author(s):  
Fang Wang ◽  
Ming Han Xu ◽  
Rui Hua Wang ◽  
Chao Yang ◽  
Ai Xia Chen ◽  
...  

The construction industry continues to develop and the requirements for cement performance are getting higher and higher. At the same time, in the steel industry, the discharge of steel slag is also increasing. The effective reuse of steel slag has become a prominent problem in the steel industry. . Therefore, it is envisaged to use steel slag as a raw material for the cement production process to produce cement and to produce high-performance cement. The main raw materials of this experiment are steel slag, limestone, sandstone and shale. Through the cement preparation process, the cement is made, and then the cement is made into concrete to test its performance. This experiment mainly studies the sintering temperature and holding time variable. In the experimental test, the analysis and comparison were carried out in five aspects of the degree of macroscopic cracking, particle size, density, microstructure and composition. In the comparison experiment of sintering temperature, with the increase of temperature, the flexural and compressive properties of cement gradually increased. In this test, 1200 °C is the most suitable temperature for the performance of the cement. Through the experimental comparison of different holding time, it is known that with the prolonging of the holding time, the microstructure and actual performance of the cement are continuously enhanced. Comprehensive consideration: the ratio of steel slag in cement ratio is 10%, sintering temperature is 1200 °C, and heat preservation is 2h. The steel slag cement prepared under this condition has the strongest performance.


2020 ◽  
Author(s):  
Katarina Šter ◽  
Sabina Kramar

<p>Al-rich mineral resources are one of the essential components for the production of the novel sustainable mineral binders. Belite-sulfoaluminate (BCSA) cements, which are considered as low-carbon and low-energy, allows the substitution of natural raw materials with secondary ones. In East-Southeast European countries (ESEE) there are huge amounts of various industrial and mine residues that are either landfilled or currently have a low recycling rate. These residues are generated from mining activities (mine waste) and as a by product of different types of industry, such as thermal power plants, steel plants or the aluminium industry (slags, ashes, red mud, etc.). Within the framework of the RIS-ALiCE project, in cooperation with 15 project partners from Slovenia, Austria, France, Hungary, Serbia, Bosnia and Herzegovina and Macedonia, a network of relevant stakeholders has been established in the field of currently unused aluminium-containing mine and industrial residues. Inside the created network mine and industrial residues have been mapped and valorised in order to evaluate their suitability for the use in innovative and sustainable low CO<sub>2</sub>-mineral binder production. Aluminium-containing residues are characterized with respect to their chemical, physical and radiological composition using different analytical methods such as X ray fluorescence spectroscopy, ICP optical emission spectrophotometry, gravimetry, X ray powder diffraction, gamma spectroscopy, etc. The long-term activity of network between wastes holders/producers and mineral end users will be enabled via developed Al-rich residues registry, including a study of the potential technological, economic and environmental impacts of applying the innovative methodology of the sustainable secondary raw materials management in ESEE region. Developed registry with the data valuable for both, waste providers as waste users in ESEE region, can be later-on upscaled also to other regions of Europe. It will provide the data on the available and appropriate Al-rich secondary resources, which will enablethe production of innovative low-CO<sub>2 </sub>cements.</p><p><strong>Keywords:</strong> secondary raw material, alternative binders, Al-rich residues, networking, mapping, valorisation, registry.</p>


Food systems ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 44-47
Author(s):  
N. E. Posokina ◽  
N. M. Alabina ◽  
A. Yu. Davydova

Nowadays, there is a growing consumer interest in food products, made from vegeta-ble raw materials. The article is devoted to an actual topic related to the choice of plant mate-rials, based on its nutritional and biological value, in order to create functional beverages. The analysis of the world market of vegetable analogues of milk was implemented. Based on the literature, the following raw materials were analyzed: cashew nuts, cannabis fruits, sesame and poppy seeds, almond kernels, buckwheat seeds and oats, soybeans. The data on nutritional value, vitamin-mineral and amino acid composition, as well as the composition of fatty acids of the specified raw materials was presented. The conclusion is made about the perspective of its use for the manufacture of drinks, alternative cow’s milk. The article reflects the results of research work on the creation of a functional drink based on sesame seeds, provides information about the nutritional value and biochemical composition of the drink, made on the basis of this raw material. Sesame milk when used regularly can help prevent diseases of the car-diovascular system, the gastrointestinal tract, the musculoskeletal system.


2020 ◽  
Author(s):  
Olga Ballus ◽  
Anna Bacardit

Protecting the environment is one of the three objectives of sustainability. One way to achieve this is to preserve natural resources by using renewable or residual raw materials. These products have a shorter lifespan and a lower carbon footprint, are highly biodegradable, and are therefore considered to be sustainable products. In this paper, three retanning agents and two oils classified as sustainable products were studied. First, biobased carbon content (an indicator of renewable raw material content) was determined. Then, the physical and organoleptic properties of the leathers treated with each product (degree of softness, firmness and fullness) were evaluated. The COD of residual baths was also determined in oils. The products presented in this paper meet the sustainability requirements, i.e., high renewable raw material content, short lifespan, and low carbon footprint. In addition, these products show high fixation and therefore have a low COD in residual baths, thus also contributing to their sustainability.


2020 ◽  
Vol 10 (18) ◽  
pp. 6222 ◽  
Author(s):  
Girts Bumanis ◽  
Jelizaveta Zorica ◽  
Diana Bajare

The potential of phosphogypsum (PG) as secondary raw material in construction industry is high if compared to other raw materials from the point of view of availability, total energy consumption, and CO2 emissions created during material processing. This work investigates a green hydraulic ternary system binder based on waste phosphogypsum (PG) for the development of sustainable high-performance construction materials. Moreover, a simple, reproducible, and low-cost manufacture is followed by reaching PG utilization up to 50 wt.% of the binder. Commercial gypsum plaster was used for comparison. High-performance binder was obtained and on a basis of it foamed lightweight material was developed. Low water-binder ratio mixture compositions were prepared. Binder paste, mortar, and foamed binder were used for sample preparation. Chemical, mineralogical composition and performance of the binder were evaluated. Results indicate that the used waste may be successfully employed to produce high-performance binder pastes and even mortars with a compression strength up to 90 MPa. With the use of foaming agent, lightweight (370–700 kg/m3) foam concrete was produced with a thermal conductivity from 0.086 to 0.153 W/mK. Water tightness (softening coefficient) of such foamed material was 0.5–0.64. Proposed approach represents a viable solution to reduce the environmental footprint associated with waste disposal.


2011 ◽  
Vol 94 (5) ◽  
pp. 1400-1410 ◽  
Author(s):  
Paula N Brown ◽  
Michael Chan ◽  
Lori Paley ◽  
Joseph M Betz

Abstract A method previously validated to determine caftaric acid, chlorogenic acid, cynarin, echinacoside, and cichoric acid in echinacea raw materials has been successfully applied to dry extract and liquid tincture products in response to North American consumer needs. Single-laboratory validation was used to assess the repeatability, accuracy, selectivity, LOD, LOQ, analyte stability (ruggedness), and linearity of the method, with emphasis on finished products. Repeatability precision for each phenolic compound was between 1.04 and 5.65% RSD, with HorRat values between 0.30 and 1.39 for raw and dry extract finished products. HorRat values for tinctures were between 0.09 and 1.10. Accuracy of the method was determined through spike recovery studies. Recovery of each compound from raw material negative control (ginseng) was between 90 and 114%, while recovery from the finished product negative control (maltodextrin and magnesium stearate) was between 97 and 103%. A study was conducted to determine if cichoric acid, a major phenolic component of Echinacea purpurea (L.) Moench and E. angustifolia DC, degrades during sample preparation (extraction) and HPLC analysis. No significant degradation was observed over an extended testing period using the validated method.


2021 ◽  
Vol 3 (1) ◽  
pp. 104-110
Author(s):  
A. S. SVIRIDOV ◽  
◽  
P. E. NOR ◽  

The Carnol system is the production of methanol from carbon dioxide (obtained from coal-fired power plants) and natural gas, and the use of the resulting methanol as an alternative fuel. The Carnol process produces hydrogen by thermal decomposition of natural gas, which then interacts with the CO2 extracted from the flue emissions of power plants. The resulting carbon can be stored or used as a raw material. The paper provides an estimated characteristic of the reduction of CO2 emissions of the Carnol process and system, and compares it with other traditional methanol production processes, including the use of biomass of industrial raw materials and vehicles powered by methanol fuel cells. CO2 emissions from a Carnol system that uses methanol as an alternative fuel can be reduced by 56 % compared to a conventional coal-fired power plant system. In the case of the use of methanol as fuel for motor vehicles, carbon dioxide emissions.


Author(s):  
Nimisha Tripathi ◽  
Colin D. Hills ◽  
Raj S. Singh ◽  
Christopher J. Atkinson

Abstract The increasing demand for food and other basic resources from a growing population has resulted in the intensification of agricultural and industrial activities. The wastes generated from agriculture are a burgeoning problem, as their disposal, utilisation and management practices are not efficient or universally applied. Particularly in developing countries, most biomass residues are left in the field to decompose or are burned in the open, resulting in significant environmental impacts. Similarly, with rapid global urbanisation and the rising demand for construction products, alternative sustainable energy sources and raw material supplies are required. Biomass wastes are an under-utilised source of material (for both energy and material generation), and to date, there has been little activity focussing on a ‘low-carbon’ route for their valorisation. Thus, the present paper attempts to address this by reviewing the global availability of biomass wastes and their potential for use as a feedstock for the manufacture of high-volume construction materials. Although targeted at practitioners in the field of sustainable biomass waste management, this work may also be of interest to those active in the field of carbon emission reductions. We summarise the potential of mitigating CO2 in a mineralisation step involving biomass residues, and the implications for CO2 capture and utilisation (CCU) to produce construction products from both solid and gaseous wastes. This work contributes to the development of sustainable value-added lower embodied carbon products from solid waste. The approach will offer reduced carbon emissions and lower pressure on natural resources (virgin stone, soil etc.).


Sign in / Sign up

Export Citation Format

Share Document