scholarly journals Development of Innovative Polyol Systems From Recycled Polyethylene Terephthalate and Renewable Raw Materials for Rigid Polyurethane Foams

2020 ◽  
Author(s):  
◽  
Aiga Ivdre

The Thesis aims to develop innovative polyols suitable for the production of rigid PU foam from recycled PET flakes and renewable raw material resources (rapeseed oil and tall oil) and to evaluate the effect of polyols on the most important properties of rigid PU foams as a thermal insulation material.

2014 ◽  
Vol 1001 ◽  
pp. 368-372
Author(s):  
Miroslava Netopilová ◽  
Jan Mikulenka ◽  
Anna Benešová

The article focuses on the research and development of a new composite material applicable in building industry, renewable raw material resources and industrial waste materials. The aim of the research is not only the application of concrete secondary raw materials but also the gaining of required safety aspects of these composite materials, i.e. certain fire technical characteristics.


Author(s):  
P.D. Patil

Fossil oil prices are soaring steeply due to the depleting petroleum raw materials. Extensive research has been carried out around the globe to develop efficient processes that can replace oil-derived polymers (conventional plastic) with bio-based polymers that originate from renewable resources. Fossil-oil based plastic products take decades to degrade, leading to the unwanted accumulation of plastic waste that can be seen all around. Further, greenhouse gases emission occurs during the production and destruction of synthetic plastic. Therefore, plastic waste has become a massive threat to the biosphere and needs to be addressed immediately. To overcome this issue, a new type of plastic can be produced from bio-resources that can fulfill even the energy demand in today's world. This new form of plastic must be accommodated fast in daily life, considering the range of applications of plastics. Biodegradable plastics made from renewable raw materials can retain all the benefits of petroleum-based plastic without having any negative impacts on the environment. Bioplastics are not toxic in nature and can easily decay back into carbon dioxide via degradation. The products made from bioplastics may be commercialized, considering their superior properties over conventional plastic. The discovery and implementation of plastic made from renewable raw material resources could be a giant leap into the sustainable future.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Darfizzi Derawi ◽  
Bashar Mudhaffar Abdullah ◽  
Hasniza Zaman Huri ◽  
Rahimi M. Yusop ◽  
Jumat Salimon ◽  
...  

Palm olein (POo) is widely produced as edible oil in tropical countries. POois considered as renewable raw material for the new industrial and pharmaceutical products synthesis based on its characterization. Palm olein was good on its viscosity index, oxidative stability, and flash and fire point. POocontained unsaturated triacylglycerols (TAGs): POO (33.3%); POP (29.6%) which plays an important role in chemical modification process to produce new industrial products. The double bond was detected on1H-NMR (5.3 ppm) and13C-NMR (130 ppm) spectra. The chemical compositions of POowere tested by using high performance liquid chromatography (HPLC) and gas chromatography (GC) techniques. This unsaturated oil is potentially to be used as renewable raw materials in chemical modification process to synthesise polyols, polyurethane, and biolubricant for industrial and pharmaceutical products application.


2021 ◽  
pp. 0021955X2110626
Author(s):  
Tae Seok Kim ◽  
Yeongbeom Lee ◽  
Chul Hyun Hwang ◽  
Kwang Ho Song ◽  
Woo Nyon Kim

The effect of perfluoroalkane (PFA) on the morphology, thermal conductivity, mechanical properties and thermal stability of rigid polyurethane (PU) foams was investigated under ambient and cryogenic conditions. The PU foams were blown with hydrofluorolefin. Morphological results showed that the minimum cell size (153 μm) was observed when the PFA content was 1.0 part per hundred polyols by weight (php). This was due to the lower surface tension of the mixed polyol solution when the PFA content was 1.0 php. The thermal conductivity of PU foams measured under ambient (0.0215 W/mK) and cryogenic (0.0179 W/mK at −100°C) conditions reached a minimum when the PFA content was 1.0 php. The low value of thermal conductivity was a result of the small cell size of the foams. The above results suggest that PFA acted as a nucleating agent to enhanced the thermal insulation properties of PU foams. The compressive and shear strengths of the PU foams did not appreciably change with PFA content at either −170°C or 20°C. However, it shows that the mechanical strengths at −170°C and 20°C for the PU foams meet the specification. Coefficient of thermal expansion, and thermal shock tests of the PU foams showed enough thermal stability for the LNG carrier’s operation temperature. Therefore, it is suggested that the PU foams blown by HFO with the PFA addition can be used as a thermal insulation material for a conventional LNG carrier.


Author(s):  
Martins Andzs ◽  
Voldemars Skrupskis

Obtaining of a new ecological heat insulation material from always renewable raw material in nature, wood and hemp, derived from wood and hemp fibre remains left from the production process. The study was carried out to find hemp wood parts (shives), fiber, and material first possible compositions together with wood fibres, to produce heat insulation materials. The use of the heat insulation material would be meant for dwelling and recreation houses. In the present research the main characteristics of these materials are determined: moisture content, density, water absorption, as well as the coefficient of heat transmission.


Author(s):  
Andi Budirohmi

Polyuretanes are widely used as elastomers, coatings, adhesivesand binders,interior and exterior cars, furniture,shoe soles, carpets, rigit and flexible foams, membrane materials as well as constuction materials .The production of polyurethanes is largely derived  from  polyols derived from petroleum . Howover, petroleum  is a non- renewable raw material . Thus it is necessary to look alternative feedstock  for the manufacture of polyol  as a polyurethane raw material. Synnthesis polyurethane by polymerization process  using  polyol volume based on polyol  oleat acid  polypropylenglycol ( PPG ) in order to know  whether fatty acid can be used  as raw materials  of polyurethane manufacture.From the result of the study. Based on Fourier Transform Infra  Red ( FTIR), showed,that the product  produced is polyol with obtained hydroxyl  group ( OH group )with hydroxylnumber is 129,81 mg KOH / g and 157,60 mg KOH / g sample of 70 


2014 ◽  
Vol 223 ◽  
pp. 148-156 ◽  
Author(s):  
Sylwia Dworakowska ◽  
Dariusz Bogdał ◽  
Federica Zaccheria ◽  
Nicoletta Ravasio

2014 ◽  
Vol 14 (4) ◽  
pp. 259-269 ◽  
Author(s):  
Mikelis Kirpluks ◽  
Ugis Cabulis ◽  
Viesturs Zeltins ◽  
Laura Stiebra ◽  
Andris Avots

Abstract One of the biggest disadvantages of rigid polyurethane (PU) foams is its low thermal resistance, high flammability and high smoke production. Greatest advantage of this thermal insulation material is its low thermal conductivity (λ), which at 18-28 mW/(m•K) is superior to other materials. To lower the flammability of PU foams, different flame retardants (FR) are used. Usually, industrially viable are halogenated liquid FRs but recent trends in EU regulations show that they are not desirable any more. Main concern is toxicity of smoke and health hazard form volatiles in PU foam materials. Development of intumescent passive fire protection for foam materials would answer problems with flammability without using halogenated FRs. It is possible to add expandable graphite (EG) into PU foam structure but this increases the thermal conductivity greatly. Thus, the main advantage of PU foam is lost. To decrease the flammability of PU foams, three different contents 3%; 9% and 15% of EG were added to PU foam formulation. Sample with 15% of EG increased λ of PU foam from 24.0 to 30.0 mW/(m•K). This paper describes the study where PU foam developed from renewable resources is protected with thermally expandable intumescent mat from Technical Fibre Products Ltd. (TFP) as an alternative to EG added into PU material. TFP produces range of mineral fibre mats with EG that produce passive fire barrier. Two type mats were used to develop sandwich-type PU foams. Also, synergy effect of non-halogenated FR, dimethyl propyl phosphate and EG was studied. Flammability of developed materials was assessed using Cone Calorimeter equipment. Density, thermal conductivity, compression strength and modulus of elasticity were tested for developed PU foams. PU foam morphology was assessed from scanning electron microscopy images.


1969 ◽  
Vol 23 ◽  
pp. 33-36
Author(s):  
Jørn Bo Jensen ◽  
Sara Borre ◽  
Jørgen O. Leth ◽  
Zyad Al-Hamdani ◽  
Laura G. Addington

In the summer of 2010, the Geological Survey of Denmark and Greenland (GEUS) mapped the potential raw materials and substrate types, over large parts of the Danish economic sector of the North Sea, in cooperation with Orbicon A/S. The mapping was carried out for the Danish Nature Agency; it is part of the general mapping of raw material resources within the territories of the Danish state and forms part of the input for the implementation of the European Union’s Marine Strategy Framework Directive. The purpose was (1) to provide an overview of the distribution, volume and composition of available raw materials and (2) to identify, describe and map the distribution of the dominant marine bottom types.


2021 ◽  
Vol 188 (3-4) ◽  
pp. 58-68
Author(s):  
Ludmila Kormishkina ◽  
◽  
Evgenii Kormishkin ◽  
Vladimir Gorin ◽  
Dmitrii Koloskov ◽  
...  

The rationale for this study is based on the extreme importance of finding a solution to a complex growth dilemma arising from the negative effects of human activity and the limited ability of the ecosystem to regenerate and provide resources required by mankind to ensure sustainable development and the long-term prosperity. The research is aimed at proving a scientific hypothesis that states: when the global raw-materials crisis becomes increasingly noticeable in various countries of the world, including Russia, circular investments may become a driver for long-term economic growth and the launch of far-reaching reforms of the economy in the 21st century. Circular investments in this paper are viewed as a special type of real eco-investment that combines advancements in technology and innovations to ensure renewal and industrial-scale reproduction of resources (raw materials and energy) from industrial and household waste, along with the mitigation and/or elimination of negative effects, on the environment. A multiple linear regression model has been developed to confirm a statistically-relevant connection between circular investments and real GDP. As a methodological foundation for the model, we used the classic Cobb-Douglas production function modified to take into account industrially reproduced raw material resources included in the production process. Further, we have defined major limits for circular investments in Russia today and highlighted the primary measures which are to be taken to launch circular investments in order to find a solution to the complex growth dilemma.


Sign in / Sign up

Export Citation Format

Share Document