scholarly journals Rust and leaf spot diseases on American elderberry plants

2017 ◽  
Author(s):  
◽  
Kaley Hensel

Elderberry rust (Puccinia sambuci Schewin.) Arthur (=P. bolleyana) and leaf spot diseases are frequently found in commercial American elderberry (Sambucus nigra L. subsp. canadensis L.) plantings throughout the growing season in Missouri. Thus, studies were conducted to ascertain if rust infections affect plant growth, fruiting, or berry puree quality. Rust symptoms were observed in early April at 9 to 18[degrees] C, [greater than or equal to] 3 h leaf wetness, and [greater than or equal to] 85% relative humidity. When young, potted elderberry plants averaged 3 to 6 rust pustules/plant, vegetative growth was not adversely affected. However, field-grown elderberry plants heavily infected with rust (137 pustules/cane) lost nearly twice as many leaves as controls during the growing season, indicating rust-induced defoliation. Shoot dry weight of these heavily infected canes was also 32% less than that of controls. First and last harvest dates were advanced by the high level of rust infection on 'Wyldewood' elderberry canes, but not by low pustules numbers ([less than] 6 pustules/plant) on 'Bob Gordon' or 'Ozark' plants. Similarly, berry yields were not significantly different at low infection levels, even though rust-infected 'Bob Gordon' plants had a 31% reduction in yield with an estimated $440/ha loss of income. Heavily-infected 'Wyldewood' canes had a significant loss in berry yield (47%) and potential income ($2,295/ha), assuming a conservative estimate of five canes/plan. In another study, Colletotrichum was isolated from elderberry leaf spot lesions and identified before subsequent re-inoculation of elderberry plants with this pathogen. Three species of Colletotrichum (C. salicis Funkel, C. kahawae subsp. ciggaro Wollenw., and C. aenigma C.M. Tian and Z. Li) were putatively identified as being casual agents of leaf spot indicating the diversity of species within this genus on elderberry plants.

HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1048C-1048
Author(s):  
Hannah M. Mathers ◽  
Elizabeth Grosskurth ◽  
Michele Bigger ◽  
Luke Case ◽  
Jenny Pope

Currently, the majority of tree liners used in the Ohio nursery industry are imported, mainly from the West Coast. The Ohio growing season is 156 days, whereas the Oregon season is 225 days. We are developing an Ohio liner production system, utilizing a retractable roof greenhouse (RRG) that extends the growing season. Liners grown in a RRG have shown greater caliper, height, and root and shoot dry weight than those grown outside of a RRG (Stoven, 2004). The objective of this research was to compare the growth of RRG-grown liners, outdoor-grown liners, and West Coast-grown liners when planted in the field. Four tree species [Quercus rubra, Malus `Prairifire', Acer ×freemannii `Jeffersred' (Autumn Blaze®), and Cercis canadensis] were started from either seed or rooted cuttings in early 2003. They were grown in a glass greenhouse and then moved to their respective environments in March (RRG) and May (outside). In Oct. 2003, the Ohio-grown liners were planted in the field at the Waterman Farm of The Ohio State University, Columbus. In Spring 2004, liners from the West Coast were purchased and planted in the same field setting. Caliper and height were measured in June and Sept. 2004. After one season in the field, trees grown from the RRG and outdoor environments resulted in greater height and caliper than the West Coast liners in Malus, Acer, and Cercis. Acer liners from Oregon had a greater increase in height from June to September than those grown outdoors or in the RRG. Quercus liners from the RRG and outdoor environments displayed greater caliper growth and growth in height than those from the West Coast. Across all species, liners grown from the RRG had the greatest increase in caliper growth.


HortScience ◽  
2005 ◽  
Vol 40 (4) ◽  
pp. 1078D-1078
Author(s):  
Sudeep Vyapari ◽  
Edmund L. Thralls ◽  
Michele S. Scheiber

A study was conducted to evaluate establishment of root-bound vs. nonroot-bound container-grown Plumbago auriculata Lam. in a landscape. A total of 144 plants were transplanted from #1 containers in a rain-out shelter at Mid-Florida Research and Education Center, Apopka, Fla., in June 2004. The field soil type was amended with composted yard waste. The three treatment types used for the study were: 1) root-bound plants; 2) root-bound plants with a vertical slice made through the root ball at a 90° angle; and 3) nonroot-bound plants. To evaluate the effect of these three treatments during the course of establishment period, harvesting was done once every 2 weeks. Data on growth indices (height × width × width), shoot dry weight, root dry weight, and length of the longest root were recorded. The experimental design was a completely randomized design consisting of three treatments, 12 harvest dates (days after planting), and four replicates per harvest date. Plants were maintained according to the best management practices recommended by the UF/IFAS, and were irrigated once a day using microirrigation. Experimental data were analyzed for significance of correlation among variables using SAS version 9.1. Results of the correlation and regression analysis indicated that the increase in the shoot dry weights (g), root dry weights (g), growth indices (m3), and root: shoot ratio had significant relationship with the harvest dates. Correlation among harvest dates and shoot dry weight, root dry weight, or growth indices was found to be positive. However, results of the study indicated that as the number of days after planting increased, the root to shoot ratio decreased.


2006 ◽  
Vol 24 (1) ◽  
pp. 18-22
Author(s):  
Donna C. Fare

Abstract Two studies were conducted to determine container size and liner (young bare root trees) trunk diameter effects on growth of Acer rubrum L. ‘Franksred’, Red Sunset™ red maple. In experiment 1, maples liners with initial mean trunk diameters of 12.2 mm (0.5 in), 15.9 mm (0.6 in), and 22.3 mm (0.9 in) were potted in 26.5 liter (#7), 37.8 liter (#10), and 56.8 liter (#15) containers and grown for 18 months (2 growing seasons). Height and trunk diameter growth at the end of each growing season were affected by both the initial liner trunk diameter and container size. During year 1, liners with an initial trunk diameter of 12.2 mm (0.5 in) increased 28 and 70% more in height growth compared to liners initially 15.9 mm (0.6 in) and 22.3 mm (0.9) in trunk diameter, respectively. Twenty three percent more height growth occurred with maples in 37.8 liter (#10) and 56.8 liter (#15) containers compared to those in 26.5 liter (#7) containers. Trunk diameter growth increased 50% more with 12.2 mm (0.5 in) liners compared to 22.3 mm (0.9 in) liners. A 25% increase in trunk diameter growth occurred with liners potted in 56.8 liter (#15) compared to 26.5 liter (#7) containers. At the end of the second growing season, final tree size was similar with liners that were initially 12.2 mm (0.5 in) and 15.9 mm (0.6 in) liners in trunk diameter to those initially 22.3 mm (0.9 in) when potted into 37.8 liter (#10) and 56.8 liter (#15) containers. In experiment 2, maple liners with trunk diameters 17.5 mm (0.7 in), 20.5 mm (0.8 in), and 29.0 mm (1.1 in) were potted in container sizes 26.5 liter (#7), 37.8 liter (#10), and 56.8 liter (#15) and grown for 18 months (2 growing seasons). Liners grown in 56.8 liter (#15) containers had 92% more height growth and 48% more trunk diameter growth than with liners in 26.5 liter (#7) containers. At termination, the shoot dry weight was 41% larger with maples in 56.8 liter (#15) containers compared to those grown in 26.5 liter (#7) containers.


1990 ◽  
Vol 8 (2) ◽  
pp. 92-95
Author(s):  
Peter R. Hicklenton

Abstract Juniperus horizontalis Moench. ‘Plumosa compacata’ and Euonymus fortunei Turcz. ‘Sarcoxie’ were grown on a sand capillary bed with two types of controlled release fertilizer (3:1 Type 100:Type 40 Nutricote 16N-4.4P-8.1K (16-10-10),and Osmocote 18N-2.6P-9.7K (18-6-12) either medium-incorporated, surface-applied or dibbled below the roots. Throughout the growing season, neither leaf area, root or shoot dry weight of euonymus was affected by fertilizer type or placement. Branch length growth and dry weight of juniper was not affected by fertilizer type when fertilizer was surface-applied or medium incorporated. Dibbled Osmocote produced similar results, but dibbled Nutricote resulted in poor root and shoot development in juniper throughout the season. Medium soluble salt concentration (determined on container leachate) was 2800 dS/m in the dibbled Nutricote treatments in June (approximately 2.5 times higher than that in the other treatments). Soluble salts decreased between June 21 and August 16 in all treatments and then remained quite constant until the end of the season (September 13).


Agrikultura ◽  
2015 ◽  
Vol 26 (1) ◽  
Author(s):  
Reginawanti Hindersah ◽  
Anne Nurbaity ◽  
Dedi Nursyamsi

ABSTRACTContinues phosphate fertilization as well as organic matter amendment can increase cadmium concentrationin soil and induce more cadmium uptake by plants. Pytoremediation using non edible plant such as ramie(Boehmeria nivea L. Goud) is cheap and effective method to extract Cd from Cd-contaminated soil. Since inplant tissue Cd is bound in phytochelatin peptide which contains nitrogen and sulphur, the objective of thisgreen house experiment was to assess the influence of nitrogen fertilizer in form of urea on cadmiumuptake, nitrogen and sulphur concentration in shoots as well as shoot dry weight of 60-day old ramiegrown in cadmium-contaminated soil. The experiment was set up in a Split Plot Design with two treatmentsand three replications. The main plot was cadmium levels (0, 10 and 15 mg kg-1) and subplot was urea level(0, 5.0 and 7.5 g pot-1). The result showed that the increase of cadmium concentration in soil enhanced itsconcentration in ramie shoot regardless of urea levels. However either cadmium or urea did not changesulphur concentration in ramie shoot. Urea of 7,5 g/pot increased shoot dry weight but adding CdCl2.H2O of15 mg/kg did not change shoot dry weight. This experiment demonstrated that ramie was able to grow inrelatively high level of soil cadmium, and higher cadmium uptake by ramie shoot was not followed by anincrease in nitrogen as well as sulphur uptake.Keywords: Cadmium, Urea, Nitrogen, Sulphur, Ramie.


2010 ◽  
Vol 20 (6) ◽  
pp. 957-962 ◽  
Author(s):  
Gabriele Amoroso ◽  
Piero Frangi ◽  
Riccardo Piatti ◽  
Alessio Fini ◽  
Francesco Ferrini

This research evaluated the effectiveness of biodegradable mulches for weed control in container-grown ‘Martin’ giant arborvitae (Thuja plicata) and measured the effects of these mulches on evaporation and substrate temperature. The experiment was carried out in the 2008 and 2009 growing seasons. Four biodegradable mulching materials were tested and compared with a chemical control (oxadiazon) and a non-mulched/non-treated control. Two levels of overhead irrigation were evaluated: 1) daily irrigation to container capacity (well watered) and 2) daily irrigation to 30% of container capacity (water stressed). Two weed management regimes were used: 1) hand weeding three times during the growing season and 2) no weeding until the end of the growing season. Plants were potted in 3-L containers and arranged in a split–split plot design in an experimental nursery. Ornamental shoot dry weight was measured at the end of the growing season. Weed shoot dry weight per container was recorded after each hand weeding. Water content per pot (as a percentage of water-holding capacity) was measured by weighing containers every 2 hours during the day. Substrate temperature was measured in the warmest period of the day. Mulches limited weed growth to the same extent as the chemical control. In 2008, mulched plants resulted in a higher shoot dry weight than non-treated and non-mulched plants, while in the second year, no differences were observed. The black color of the 3-L containers was probably the main factor driving substrate temperature increase, indicating mulching materials did not affect substrate temperatures. In both experiments, container water content was unaffected by mulching materials. Results seem to demonstrate that transpiration is the main component of water loss from container-grown giant arborvitae plants.


2019 ◽  
Vol 29 (6) ◽  
pp. 842-853
Author(s):  
Anthony L. Witcher ◽  
Fulya Baysal-Gurel ◽  
Eugene K. Blythe ◽  
Donna C. Fare

Flowering dogwood (Cornus florida) is a valuable nursery product typically produced as a field-grown crop. Container-grown flowering dogwood can grow much faster than field-grown plants, thus shortening the production cycle, yet unacceptable crop loss and reduced quality continue to be major issues with container-grown plants. The objective of this research was to evaluate the effects of container size and shade duration on growth of flowering dogwood cultivars Cherokee Brave™ and Cherokee Princess from bare-root liners. In 2015, bare-root liners were transplanted to 23-L (no. 7) containers and placed under shade for 0 months (full sun), 2 months (sun4/shade2), 4 months (sun2/shade4), or 6 months (full shade) during the growing season. In 2016, one-half of the plants remained in no. 7 containers and the other half were transplanted to 50-L (no. 15) containers and assigned to the same four shade treatments. In 2015, plant height was greatest with full shade for both cultivars, whereas stem diameter and shoot dry weight (SDW) were greatest in full shade for Cherokee Brave™. In 2016, both cultivars in no. 15 containers had greater plant height, stem diameter, root dry weight (RDW), and SDW. Full shade resulted in the greatest height, stem diameter, RDW, and SDW for Cherokee Brave™, and improved overall growth for ‘Cherokee Princess’. However, vigorous growth due to container size and shade exposure increased the severity of powdery mildew (Erysiphe pulchra) in both years. Substrate leachate nutrient concentration (nitrate nitrogen and phosphate) was greater in no. 15 containers but shade duration had no effect.


2007 ◽  
Vol 58 (8) ◽  
pp. 811 ◽  
Author(s):  
S. Zhang ◽  
J. Hu ◽  
Y. Zhang ◽  
X. J. Xie ◽  
Allen Knapp

Salt stress is an important constraint to lucerne (Medicago sativa L.) production in many parts of the world. Seeds of 3 lucerne varieties, cvv. Victoria, Golden Empress, and Victor, were used to investigate the effects of seed priming with 5 µm/L brassinolide on germination and seedling growth under a high level of salt stress (13.6 dS/m NaCl solution). The results showed that germination percentage, germination index, and vigour index of lucerne seeds primed with brassinolide were significantly higher than those of the non-primed seeds under salinity stress in each variety. Seed priming with brassinolide significantly increased the shoot fresh weight, shoot dry weight, and root dry weight in 2 varieties, and significantly increased the root length and root vigour in each variety. It also significantly increased the activities of antioxidant enzymes, peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT), in Victoria and Victor seedlings. During seedling growth, the primed seeds significantly reduced the malondialdehyde (MDA) accumulation. This suggests that priming lucerne seed with brassinolide at a suitable concentration can improve germination and seedling growth under high-saline soils.


HortScience ◽  
2010 ◽  
Vol 45 (3) ◽  
pp. 342-346
Author(s):  
Joanne E. MacDonald ◽  
John N. Owens

We compared the effects of different durations of short days (SDs) as a dormancy-induction regime on bud development, bud endodormancy, and morphology of first-year containerized coastal douglas fir [Pseudotsuga menziesii (Mirb.) Franco var. menziesii] seedlings in the nursery together with seedling survival and growth after one growing season in a common garden. In early July, four durations of 8-h SDs were applied: 3, 4, 5, and 6 weeks. During the first week of SDs, budscale initiation started and was completed; then initiation of needles for next year's leading shoot (leader) began. Needle initiation was completed 10 weeks after the start of the regime in seedlings given 5 or 6 weeks of SDs and 13 weeks for those given 3 or 4 weeks of SDs. In early October, duration of SDs had no effect on bud endodormancy; 50% to 88% of terminal buds were endodormant. On this date, seedling height and shoot dry weight were unaffected by duration of SDs, whereas root dry weight and shoot diameter were significantly reduced in seedlings given 6 weeks of SDs compared with other durations. After one growing season, duration of SDs had no effect on seedling survival, leader length, shoot dry weight, root dry weight, or shoot diameter. We recommend the 3-week duration of SDs for coastal douglas fir crops.


2000 ◽  
Vol 36 (4) ◽  
pp. 469-478 ◽  
Author(s):  
D. R. BUTLER ◽  
K. D. R. WADIA ◽  
R. K. REDDY ◽  
N. D. DAS ◽  
B. JOHNSON ◽  
...  

Infection of groundnut by pathogens causing early and late leaf spot diseases is strongly affected by accumulated daily leaf wetness periods and, in the rainy season, temperature is unlikely to severely limit infection. Earlier work relating patterns of leaf wetness to infection, was used to define a daily Wetness Index (WI) which was compared with infection on inoculated plants exposed in the crop for periods of 7 d. Infection was only severe when the 7-d WI total exceeded a value of 2.3. The proportion of leaves with one or more lesions on the main stem was used to assess the amount of inoculum in the crop. When the proportion of diseased leaves exceeded 10% and the WI total exceeded the threshold, application of a fungicide was advised. Successive sprays were separated by at least 14 d and a maximum of three sprays were applied in the growing season. Field trials showed that three sprays gave limited benefit where the disease pressure was severe, but substantial increases in pod and haulm yield were possible with only one or two fungicide applications in locations with less disease pressure.


Sign in / Sign up

Export Citation Format

Share Document