scholarly journals Greenhouse Gas Emissions from an Ornamental Crop as Impacted by Two Best Management Practices: Irrigation Delivery and Fertilizer Placement1

2018 ◽  
Vol 36 (2) ◽  
pp. 58-65
Author(s):  
Anna-Marie Murphy ◽  
G. Brett Runion ◽  
Stephen A. Prior ◽  
H. Allen Torbert ◽  
Jeff L. Sibley ◽  
...  

Abstract Agriculture is one of the largest contributors of greenhouse gas (GHG) emissions. To date, much work on reducing GHG emissions has centered on row crops, pastures, forestry, and animal production systems, while little emphasis has been placed on specialty crop industries such as horticulture. In this horticulture container study, Japanese boxwood (Buxus microphylla Siebold & Zucc.) was used to evaluate the interaction of irrigation (overhead vs drip) and fertilizer placement (dibble vs incorporated) on GHG emissions (CO2, N2O, and CH4). Plants were grown in 11.4 L (#3) containers with a 6:1 pine bark:sand substrate with standard amendments. All containers received 6.35 mm (0.25 in) water three times daily. Gas samples were collected in situ using the static closed chamber method according to standard protocols and analyzed using gas chromatography. Total cumulative CO2 loss was not affected by differences in irrigation or fertilizer placement. Total cumulative N2O efflux was least for drip-irrigated plants, regardless of fertilizer placement. For overhead-irrigated plants, N2O efflux was greatest for those with incorporated fertilizer. Efflux of CH4 was generally low throughout the study. Findings suggest that utilizing drip irrigation could decrease N2O emissions, regardless of fertilizer placement. However, when limited to overhead irrigation, dibbled fertilizer placement could decrease N2O emissions. Index words: carbon dioxide, methane, nitrous oxide, trace gas Species used in this study: Japanese boxwood (Buxus microphylla Siebold & Zucc.)

2021 ◽  
Author(s):  
Elsbe von der Lancken ◽  
Victoria Nasser ◽  
Katharina Hey ◽  
Stefan Siebert ◽  
Ana Meijide

<p>The need to sustain global food demand while mitigating greenhouse gases (GHG) emissions is a challenge for agricultural production systems. Since the reduction of GHGs has never been a breeding target, it is still unclear to which extend different crop varieties will affect GHG emissions. The objective of this study was to evaluate the impact of N-fertilization and of the use of growth regulators applied to three historical and three modern varieties of winter wheat on the emissions of the three most important anthropogenic GHGs, i.e. carbon dioxide (CO<sub>2</sub>), methane (CH<sub>4</sub>) and nitrous oxide (N<sub>2</sub>O). Furthermore, we aimed at identifying which combination of cultivars and management practises could mitigate GHG emissions in agricultural systems without compromising the yield. GHG measurements were performed using the closed chamber method in a field experiment located in Göttingen (Germany) evaluating three historical and three modern winter wheat varieties, with or without growth regulators under two fertilization levels (120 and 240 kg nitrogen ha<sup>-1</sup>). GHG measurements were carried out for 2 weeks following the third nitrogen fertilizer application (where one third of the total nitrogen was applied), together with studies on the evolution of mineral nitrogen and dissolved organic carbon in the soil. Modern varieties showed significantly higher CO<sub>2</sub> emissions (i.e. soil and plant respiration; +23 %) than historical varieties. The soils were found to be a sink for CH<sub>4,</sub> but CH<sub>4</sub> fluxes were not affected by the different treatments. N<sub>2</sub>O emissions were not significantly influenced by the variety age or by the growth regulators, and emissions increased with increasing fertilization level. The global warming potential (GWP) for the modern varieties was 7284.0 ± 266.9 kg CO<sub>2-eq</sub> ha<sup>-1</sup>. Even though the GWP was lower for the historic varieties (5939.5 ± 238.2 kg CO<sub>2</sub>-<sub>eq</sub> ha<sup>-1</sup>), their greenhouse gas intensity (GHGI), which relates GHG and crop yield, was larger (1.5 ± 0.3 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), compared to the GHGI of modern varieties (0.9 ± 0.0 g CO<sub>2</sub>-<sub>eq</sub> g<sup>-1</sup> grain), due to the much lower grain yield in the historic varieties. Our results suggest that in order to mitigate GHG emissions without compromising the grain yield, the best management practise is to use modern high yielding varieties with growth regulators and a fertilization scheme according to the demand of the crop.</p>


2021 ◽  
Vol 39 (2) ◽  
pp. 53-61
Author(s):  
Anna-Marie Murphy ◽  
G. Brett Runion ◽  
Stephen A. Prior ◽  
H. Allen Torbert ◽  
Jeff L. Sibley ◽  
...  

Abstract Previous work by these authors have quantified cumulative greenhouse gas (GHG) emissions for several woody and herbaceous perennial species, in interaction with several standard best management practices (container size, fertilizer application and irrigation delivery methods, and light level). In this study, the greenhouse production of three annual species [coleus (Solenostemon scutellarioides Thonn. ‘Redhead'), vinca (Catharanthus roseus L. ‘Cooler Grape'), and impatiens (Impatiens walleriana Hook. f. ‘Super Elfin XP White')] was evaluated in three substrates [80:20 peat:perlite, 80:20 peat:WholeTree (a whole pine tree-based substrate), 60:40 peat:WholeTree]. Emissions of CO2, N2O and CH4 were collected over a period of 52 days. Without regard to media, coleus had the highest cumulative CO2 efflux (statistically similar to vinca), due to its increased size in comparison with both vinca and impatiens. Without regard to species, plant-pot systems using the highest proportion of WholeTree (40%) had numerically the most cumulative CO2 efflux (statistically similar to those containing only 20% WholeTree). No differences were observed for the main effect of species or media for N2O or CH4. Results suggest that using a more sustainable high wood fiber substrate in similar proportions to that of perlite in an industry standard mix (20%) could yield similarly sized plants with no negative impact on GHG emissions. Index words: alternative substrate, WholeTree, carbon sequestration, carbon dioxide, nitrous oxide, methane, global climate change. Species used in this study: ‘Redhead' coleus, Solenostemon scutellarioides Thonn. ‘Redhead'; ‘Cooler Grape' vinca, Catharanthus roseus L. ‘Cooler Grape'; ‘Super Elfin XP White' impatiens, Impatiens walleriana Hook. f. ‘Super Elfin XP White'.


Agronomy ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 371
Author(s):  
Tien L. Weber ◽  
Xiying Hao ◽  
Cole D. Gross ◽  
Karen A. Beauchemin ◽  
Scott X. Chang

Cattle production is a large source of greenhouse gas (GHG) emissions from the Canadian livestock sector. Efforts to reduce CH4 emissions from enteric fermentation have led to modifications of diet composition for livestock, resulting in a corresponding change in manure properties. We studied the effect of applying manure from cattle fed a barley-based diet with and without the methane inhibitor supplement, 3-nitrooxypropanol (3-NOP), on soil GHG emissions. Three soils common to Alberta, Canada, were used: a Black Chernozem, a Dark Brown Chernozem, and a Gray Luvisol. We compared the supplemented (3-NOPM) and non-supplemented manure (BM) amendments to a composted 3-NOPM (3-NOPC) amendment and a control with no manure amendment (CK). In an 84-day laboratory incubation experiment, 3-NOPM had significantly lower cumulative CO2 emissions compared to BM in both the Black Chernozem and Gray Luvisol. The cumulative N2O emissions were lowest for 3-NOPC and CK and highest for 3-NOPM across all soil types. Cumulative CH4 emissions were only affected by soil type, with a net positive flux from the fine-textured Gray Luvisol and Dark Brown Chernozem and a net negative flux from the coarse-textured Black Chernozem. Cumulative anthropogenic GHG emissions (CO2-equivalent) from soil amended with 3-NOPM were significantly higher than those for both BM and CK amendments in the Black Chernozem, while the cumulative anthropogenic GHG emissions from the 3-NOPC treatment were similar to or significantly lower than those for the BM and CK treatments across all soil types. We conclude that soil GHG emissions resulting from the 3-NOPM amendment are dependent on soil type and 3-NOPM could potentially increase soil GHG emissions compared to BM or CK. Although we show that the composting of 3-NOPM prior to soil application can reduce soil GHG emissions, the composting process also releases GHGs, which should also be considered in assessing the life-cycle of manure application. Our results provide a first look at the potential effect of the next stage in the life cycle of 3-NOP on GHG emissions. Further research related to the effect of soil properties, particularly in field studies, is needed to assess the best management practices related to the use of manure from cattle-fed diets supplemented with 3-NOP as a soil amendment.


Animals ◽  
2018 ◽  
Vol 8 (12) ◽  
pp. 234 ◽  
Author(s):  
Tony van der Weerden ◽  
Pierre Beukes ◽  
Cecile de Klein ◽  
Kathryn Hutchinson ◽  
Lydia Farrell ◽  
...  

An important challenge facing the New Zealand (NZ) dairy industry is development of production systems that can maintain or increase production and profitability, while reducing impacts on receiving environments including water and air. Using research ‘farmlets’ in Waikato, Canterbury, and Otago (32–200 animals per herd), we assessed if system changes aimed at reducing nitrate leaching can also reduce total greenhouse gas (GHG) emissions (methane and nitrous oxide) and emissions intensity (kg GHG per unit of product) by comparing current and potential ‘improved’ dairy systems. Annual average GHG emissions for each system were estimated for three or four years using calculations based on the New Zealand Agricultural Inventory Methodology, but included key farmlet-specific emission factors determined from regional experiments. Total annual GHG footprints ranged between 10,800 kg and 20,600 kg CO2e/ha, with emissions strongly related to the amount of feed eaten. Methane (CH4) represented 75% to 84% of the total GHG footprint across all modelled systems, with enteric CH4 from lactating cows grazing pasture being the major source. Excreta deposition onto paddocks was the largest source of nitrous oxide (N2O) emissions, representing 7–12% of the total GHG footprint for all systems. When total emissions were represented on an intensity basis, ‘improved’ systems are predicted to generally result in lower emissions intensity. The ‘improved’ systems had lower GHG footprints than the ‘current’ system, except for one of the ‘improved’ systems in Canterbury, which had a higher stocking rate. The lower feed supplies and associated lower stocking rates of the ‘improved’ systems were the key drivers of lower total GHG emissions in all three regions. ‘Improved’ systems designed to reduced N leaching generally also reduced GHG emissions.


Atmosphere ◽  
2018 ◽  
Vol 9 (7) ◽  
pp. 261 ◽  
Author(s):  
Akinori Mori

In Japan, it is important to recycle the nutrients in manure for forage production because most dairy cattle are fed inside, mainly with imported grain and home-grown roughage. To understand the overall effect of manure use on grassland on the net greenhouse gas (GHG) emission and GHG intensity of herbage production systems, the integrated evaluation of emissions of carbon dioxide (CO2), methane (CH4), and nitrous oxide (N2O) is essential. The objective of this study was to compare the net GHG emissions (expressed in CO2-eq ha−1 y−1) and GHG intensity (expressed in CO2-eq Mg–1 dry matter yield) of herbage production based on manure slurry + synthetic fertilizer (slurry system) with that based on farmyard manure + synthetic fertilizer (FYM system). Calculations of net GHG emissions and GHG intensity took into account the net ecosystem carbon balance (NECB) in grassland, the CH4 and N2O emissions from grassland, and GHG emissions related to cattle waste management, synthetic fertilizer manufacture, and fuel consumption for grassland management based on literature data from previous studies. The net GHG emissions and GHG intensity were 36% (6.9 Mg CO2-eq ha−1 y−1) and 41% (0.89 Mg CO2-eq Mg−1), respectively, lower in the FYM system.


Soil Systems ◽  
2020 ◽  
Vol 4 (2) ◽  
pp. 20 ◽  
Author(s):  
Anish Sapkota ◽  
Amir Haghverdi ◽  
Claudia C. E. Avila ◽  
Samantha C. Ying

Irrigation practices can greatly influence greenhouse gas (GHG) emissions because of their control on soil microbial activity and substrate supply. However, the effects of different irrigation management practices, such as flood irrigations versus reduced volume methods, including drip and sprinkler irrigation, on GHG emissions are still poorly understood. Therefore, this review was performed to investigate the effects of different irrigation management strategies on the emission of nitrous oxide (N2O), carbon dioxide (CO2), and methane (CH4) by synthesizing existing research that either directly or indirectly examined the effects of at least two irrigation rates on GHG emissions within a single field-based study. Out of thirty-two articles selected for review, reduced irrigation was found to be effective in lowering the rate of CH4 emissions, while flood irrigation had the highest CH4 emission. The rate of CO2 emission increased mostly under low irrigation, and the effect of irrigation strategies on N2O emissions were inconsistent, though a majority of studies reported low N2O emissions in continuously flooded field treatments. The global warming potential (GWP) demonstrated that reduced or water-saving irrigation strategies have the potential to decrease the effect of GHG emissions. In general, GWP was higher for the field that was continuously flooded. The major finding from this review is that optimizing irrigation may help to reduce CH4 emissions and net GWP. However, more field research assessing the effect of varying rates of irrigation on the emission of GHGs from the agricultural field is warranted.


2019 ◽  
Vol 446 (1-2) ◽  
pp. 163-177 ◽  
Author(s):  
Arlete S. Barneze ◽  
Jeanette Whitaker ◽  
Niall P. McNamara ◽  
Nicholas J. Ostle

Abstract Aims Grasslands are important agricultural production systems, where ecosystem functioning is affected by land management practices. Grass-legume mixtures are commonly cultivated to increase grassland productivity while reducing the need for nitrogen (N) fertiliser. However, little is known about the effect of this increase in productivity on greenhouse gas (GHG) emissions in grass-legume mixtures. The aim of this study was to investigate interactions between the proportion of legumes in grass-legume mixtures and N-fertiliser addition on productivity and GHG emissions. We tested the hypotheses that an increase in the relative proportion of legumes would increase plant productivity and decrease GHG emissions, and the magnitude of these effects would be reduced by N-fertiliser addition. Methods This was tested in a controlled environment mesocosm experiment with one grass and one legume species grown in mixtures in different proportions, with or without N-fertiliser. The effects on N cycling processes were assessed by measurement of above- and below-ground biomass, shoot N uptake, soil physico-chemical properties and GHG emissions. Results Above-ground productivity and shoot N uptake were greater in legume-grass mixtures compared to grass or legume monocultures, in fertilised and unfertilised soils. However, we found no effect of legume proportion on N2O emissions, total soil N or mineral-N in fertilised or unfertilised soils. Conclusions This study shows that the inclusion of legumes in grass-legume mixtures positively affected productivity, however N cycle were in the short-term unaffected and mainly affected by nitrogen fertilisation. Legumes can be used in grassland management strategies to mitigate climate change by reducing crop demand for N-fertilisers.


2021 ◽  
Vol 9 (5) ◽  
pp. 983
Author(s):  
Cristina Lazcano ◽  
Xia Zhu-Barker ◽  
Charlotte Decock

The use of organic fertilizers constitutes a sustainable strategy to recycle nutrients, increase soil carbon (C) stocks and mitigate climate change. Yet, this depends largely on balance between soil C sequestration and the emissions of the potent greenhouse gas nitrous oxide (N2O). Organic fertilizers strongly influence the microbial processes leading to the release of N2O. The magnitude and pattern of N2O emissions are different from the emissions observed from inorganic fertilizers and difficult to predict, which hinders developing best management practices specific to organic fertilizers. Currently, we lack a comprehensive evaluation of the effects of OFs on the function and structure of the N cycling microbial communities. Focusing on animal manures, here we provide an overview of the effects of these organic fertilizers on the community structure and function of nitrifying and denitrifying microorganisms in upland soils. Unprocessed manure with high moisture, high available nitrogen (N) and C content can shift the structure of the microbial community, increasing the abundance and activity of nitrifying and denitrifying microorganisms. Processed manure, such as digestate, compost, vermicompost and biochar, can also stimulate nitrifying and denitrifying microorganisms, although the effects on the soil microbial community structure are different, and N2O emissions are comparatively lower than raw manure. We propose a framework of best management practices to minimize the negative environmental impacts of organic fertilizers and maximize their benefits in improving soil health and sustaining food production systems. Long-term application of composted manure and the buildup of soil C stocks may contribute to N retention as microbial or stabilized organic N in the soil while increasing the abundance of denitrifying microorganisms and thus reduce the emissions of N2O by favoring the completion of denitrification to produce dinitrogen gas. Future research using multi-omics approaches can be used to establish key biochemical pathways and microbial taxa responsible for N2O production under organic fertilization.


Atmosphere ◽  
2021 ◽  
Vol 12 (5) ◽  
pp. 563
Author(s):  
Kelsey Anderson ◽  
Philip A. Moore ◽  
Jerry Martin ◽  
Amanda J. Ashworth

Gaseous emissions from poultry litter causes production problems for producers as well as the environment, by contributing to climate change and reducing air quality. Novel methods of reducing ammonia (NH3) and greenhouse gas (GHG) emissions in poultry facilities are needed. As such, our research evaluated GHG emissions over a 42 d period. Three separate flocks of 1000 broilers were used for this study. The first flock was used only to produce litter needed for the experiment. The second and third flocks were allocated to 20 pens in a randomized block design with four replicated of five treatments. The management practices studied included an unamended control; a conventional practice of incorporating aluminum sulfate (referred to as alum) at 98 kg/100 m2); a novel litter amendment made from alum mud, bauxite, and sulfuric acid (alum mud litter amendment, AMLA) applied at different rates (49 and 98 kg/100 m2) and methods (surface applied or incorporated). Nitrous oxide emissions were low for all treatments in flocks 2 and 3 (0.40 and 0.37 mg m2 hr−1, respectively). The formation of caked litter (due to excessive moisture) during day 35 and 42 caused high variability in CH4 and CO2 emissions. Alum mud litter amendment and alum did not significantly affect GHGs emissions from litter, regardless of the amendment rate or application method. In fact, litter amendments such as alum and AMLA typically lower GHG emissions from poultry facilities by reducing ventilation requirements to maintain air quality in cooler months due to lower NH3 levels, resulting in less propane use and concomitant reductions in CO2 emissions.


2017 ◽  
Vol 6 (2) ◽  
pp. 66 ◽  
Author(s):  
Maria Storrle ◽  
Hans-Jorg Brauckmann ◽  
Gabriele Broll

This study investigates the amounts of greenhouse gas (GHG) emissions due to manure handling within different livestock production systems in Tyumen oblast of Western Siberia. Tyumen oblast occupies approx. 160 000 km² of Asian taiga and forest steppe. The amount of GHGs from manure was calculated as a function of the handling according to current IPCC guidelines for ecozones and livestock production systems. The entire Tyumen oblast has annual 7 400 t methane emissions and 440 t nitrous oxide emissions from manure. Three livestock production systems are prevalent in Tyumen oblast: Mega farms, small farms and peasant farms. The share of mega farms is 81 % (171 kt CO2 eq). Additionally, the slurry system in mega farms causes environmental pollution. GHG emissions and environmental pollution could be reduced by implementing solid manure systems or pasturing, by installing storage facilities for slurry outside the stables and through application of the manure as fertiliser at mega farms. In small farms solid manure systems and a small stocking density of livestock lead to smallest GHG emissions (1 %, 3 kt CO2 eq) from manure. In peasant farming 18 % (38 kt CO2 eq) of GHGs are emitted due to pasturing. 


Sign in / Sign up

Export Citation Format

Share Document