scholarly journals Modification of cement systems by carbon nanotubes

Author(s):  
Skripkiunas Gintautas

The nanoparticles and nanostructures such as nano silica, nano metakaolin, titanium dioxide and aluminium oxide nanoparticles, graphite nanomaterials, carbon nanotubes are used for modification of composite materials in construction industry. The considerable attention of researchers is focused on the investigation of cement systems modified by carbon nanotubes (CNT). The present research describes the generalized data about modification of cement systems by CNT suspension in fresh and hardened state. The influence of carbon nanotubes on setting time of cement paste, rheological and mechanical properties of nanomodified cement systems are demonstrated in the present research.

2017 ◽  
Vol 51 (12) ◽  
pp. 1693-1701 ◽  
Author(s):  
EA Zakharychev ◽  
EN Razov ◽  
Yu D Semchikov ◽  
NS Zakharycheva ◽  
MA Kabina

This paper investigates the structure, length, and percentage of functional groups of multi-walled carbon nanotubes (CNT) depending on the time taken for functionalization in HNO3 and H2SO4 mixture. The carbon nanotube content and influence of functionalization time on mechanical properties of polymer composite materials based on epoxy matrix are studied. The extreme dependencies of mechanical properties of carbon nanotube functionalization time of polymer composites were established. The rise in tensile strength of obtained composites reaches 102% and elastic modulus reaches 227% as compared to that of unfilled polymer. The composites exhibited best mechanical properties by including carbon nanotube with 0.5 h functionalization time.


This chapter discusses the effects of metakaolin (MK) on geopolymer mortar and concrete industries. The research topics of MK-based geopolymer cover reaction mechanisms and kinetics. This chapter aims at augmenting knowledge about enhancing mechanical properties of geopolymer mortars/concrete using MK. Specifically, this chapter presents literature studies as well as current experimental studies which delineate the effect of MK on fresh and hardened-state properties of geopolymer mortars (GPMs). Properties and characteristics of metakaolin are explained followed by properties of fresh MK mortars. Properties of hardened MK concrete and durability aspects of MK mortars are explained. Applications of MK-based geopolymers and metakaolin-based geopolymers as repair materials are also included in this chapter. The results of using MK-based GPMs revealed improved workability, enhanced setting time, increased density, higher compressive strength, flexural strength, and resistance against acid attack than conventional ordinary portland cement mortar/concrete.


Author(s):  
Mehran Tehrani ◽  
Ayoub Y. Boroujeni ◽  
Majid Manteghi ◽  
Zhixian Zhou ◽  
Marwan Al-Haik

Electromagnetic (EM) waves, such as electronic noise and radio frequency interference can be regarded as an invisible electronic pollution which justifies a very active quest for effective electromagnetic interference (EMI) shielding materials. Highly conductive materials of adequate thickness are the primary solutions to shield against EMI. Equipment cases and basic structure of space aircraft and launch vehicles have traditionally been made of aluminum, steel and other electrically conductive metals. However, in recent years composite materials have been used for electronic equipment manufacturing because of their lightweight, high strength, and ease of fabrication. Despite these benefits, composite materials are not as electrically conductive as traditional metals, especially in terms of electrical grounding purposes and shielding. Therefore, extra effort must be taken to resolve these shortcomings. The present work demonstrates a study on developing hybrid composites based on fiberglass with surface grown carbon nanotubes (CNTs) for EMI applications. The choice of fiberglass is primarily because it naturally possesses poor electrical conductivity, hence growing CNTs over glass fiber surface can significantly improve the conductivity. The fabrics were sputter-coated with a thin layer of SiO2 thermal barrier prior to growing of CNTs. The CNTs were grown on the surface of woven fiberglass fabrics utilizing a relatively low temperature technique. Raw fiberglass fabric, SiO2 coated fabric, and SiO2 coated fabric which was subjected to the identical heat treatment as the samples with CNTs were also prepared. Two-layers composite specimens based on different surface treated fiberglass fabrics were fabricated and their EMI shielding effectiveness (SE) was measured. The EMI SE of the hybrid CNT-fiberglass composites was shown to be 5–10 times of the reference samples. However, the tensile mechanical properties of the composites based on the different above mentioned fibers revealed significant degradation due to the elevated CNT growth temperature and the addition of coating layer and CNTs. To further probe the structure of the hybrid composites and the inter-connectivity of the CNTs from one interface to another, sets of 20-layers composites based on different surface treated fabrics were also fabricated and characterized.


2013 ◽  
Vol 818 ◽  
pp. 124-131
Author(s):  
Assed N. Haddad ◽  
Jorge F. de Morais ◽  
Ana Catarina J. Evangelista

Nanomaterials could change the face of modern construction because they are more resistant, more durable and have notable features. Concrete is a material widely used in construction industry worldwide. Carbon nanotube has been considered a new and outstanding material in nanoscience field with great potential application in the construction industry. The study presented in this paper, aims at assessing how carbon nanotubes can affect cement composites and so the concrete, in terms of microstructure and physical-mechanical properties. Three different ratios of carbon nanotubes have been searched: 0.20%, 0.40% and 0.60%. To evaluate the mechanical properties of the samples, destructive and non-destructive tests were carried out to obtain compressive strength, tensile strength by diametrical compression, dynamic modulus of elasticity as well as the determination of their deformation properties. This work also aims to motivate entrepreneurs and professionals in the sector of civil engineering on the advantages of the application of nanotechnology in construction, as well as providing information to the scientific and technological community in general.


2021 ◽  
Vol 10 (1) ◽  
pp. 1395-1409
Author(s):  
Changjiang Liu ◽  
Xin Su ◽  
Yuyou Wu ◽  
Zhoulian Zheng ◽  
Bo Yang ◽  
...  

Abstract Nano-silica (NS) is one of the most important nanomaterials in recent years. It is used as a new cement-based composite reinforcement in building materials because of its high volcanic ash activity. In order to achieve the goal of carbon peaking and carbon neutralization, combined with the research idea of cementitious materials-reducing admixture for concrete, under the condition of reducing the amount of cement in concrete by 20%, the influence of different dosages of NS on the setting time and mechanical properties of concrete was analyzed. In addition, the shrinkage performance, impermeability, and resistance to chloride-ion permeability of concrete were also studied. The results show that under the same curing conditions and ages, when the NS dosage is 2.5%, the compressive strength and splitting tensile strength of the specimen after 28 days of curing are the highest, reaching 40.87 and 3.8 MPa, which show an increase by 6.6 and 15.15%. The shrinkage performance of concrete increases with the increase in NS dosage. In addition, when the NS dosage is 2.0%, the durability of concrete has also been greatly improved. The impermeability of concrete increased by 18.7% and the resistance to chloride-ion permeability increased by 14.7%. Through microscopic analysis it was found that NS can promote the hydration reaction, generate more hydration products such as calcium silicate hydrate (C–S–H), enhance the interfacial adhesion between the matrix and the aggregate, and form a closer interfacial transition zone. Moreover, the addition of NS also reduces the cumulative pore volume in concrete, refines the pore size, and makes the internal structure of concrete denser.


2021 ◽  
Vol 29 (9_suppl) ◽  
pp. S1386-S1402
Author(s):  
S Srikant Patnaik ◽  
Tarapada Roy

In the present work, a combination of experimental and numerical procedure is proposed to study the effects of different hygrothermal conditions on the creep strain, viscoelastic properties of nanocomposites, and mechanical properties of such nanocomposite-based carbon fiber–reinforced polymer (CFRP) hybrid composite materials. Ultrasonic probe sonicator is used to randomly disperse the multiwalled carbon nanotubes into an epoxy to minimize agglomerations. Dynamic mechanical analysis is employed to conduct the creep tests under different hygrothermal conditions of such nanocomposite samples. The Findley power law is used to obtain the long-term creep behavior of nanocomposite materials. Prony series is used to determine the viscoelastic properties of nanocomposite material in the frequency domain. Coefficient of moisture expansion (CME) is independent of moisture concentration; thus, CME of the nanocomposite is also determined. Strength of materials and Saravanos–Chamis micromechanics (SCM) have also been utilized to obtain the mechanical properties of such hybrid composite materials under different hygrothermal conditions. It has been found that the inclusion of multiwalled carbon nanotubes in the nanocomposite and hybrid composites improves storage modulus and loss factor (i.e., tan δ) compared to the conventional CFRP-based composite materials under hygrothermal conditions.


2012 ◽  
Vol 557-559 ◽  
pp. 201-204 ◽  
Author(s):  
Wen Yong Liu ◽  
Yi Chen ◽  
Xi Tu ◽  
Yue Jun Liu ◽  
Xi Hai Hao

The thermoplastic processing and mechanical properties of starch and polyvinyl alcohol (PVA) composites were studied. Glycerol was chosen as the plasticizer and nano-silica (nano-SiO2) as the reinforcing agent of the starch/PVA composites. The results showed that the mechanical properties of the obtained starch/PVA blend were best when the glycerol content was 30% of starch and 20% of PVA, and the weight ratio of PVA and starch was 0.8 (wPVA/ wstarch= 0.8/1). After the addition of nano-SiO2, the mechanical properties of the starch/PVA blends were improved. When the weight percent of nano-SiO2was 2%, the mechanical properties of the SiO2/starch/PVA composite were most excellent. It was shown that the tensile strength was increased by 16% and the elongation increased by 72%. Moreover, it was confirmed by rheological measurements that nano-SiO2could interact with the composite materials, which results in the improvement of the mechanical strength of the starch/PVA composites.


2012 ◽  
Vol 496 ◽  
pp. 134-137 ◽  
Author(s):  
Wen Yong Liu ◽  
Yi Chen ◽  
Long Ouyang ◽  
Yue Jun Liu ◽  
Xi Hai Hao

The thermoplastic processing and mechanical properties of starch and polycaprolactone (PCL) composites reinforced by nano-silica (nano-SiO2) were studied. The results showed that the mechanical properties of the starch/PCL blends improved significantly with the increase of PCL. After the addition of nano-SiO2, the mechanical properties of the starch/PCL blends further improved. When the weight percent of nano-SiO2 was 1.8%, the mechanical properties of the SiO2/TPS/PCL composite were most excellent. By comparison with the starch/PCL (50/50) blends, the tensile strength of the SiO2/TPS/PCL composite with 1.8% SiO2 was increased by 20% and the elongation increased by 33%. Moreover, it was confirmed by rheological measurements that nano-SiO2 could interact with the composite materials, which results in the improvement of the mechanical strength of the TPS/PCL composites.


2019 ◽  
Vol 12 (3) ◽  
pp. 486-508
Author(s):  
R. D. MARIANO ◽  
J. S. ANDRADE NETO ◽  
M. R. MORELLI ◽  
D. V. RIBEIRO

Abstract The present study evaluated the feasibility of the use of grinding dust (GD), a waste generated in the clutch disc finishing process, as a retardant additive in cementitious matrices. For this, the waste was added in contents of 5%, 10% and 15%, relative to the cement weight, and the setting time was determined by the Vicat method. In addition, the influence of this material on rheology (flow table, squeeze-flow and rotational rheometry) and on the physical-mechanical properties of the hardened matrices was analyzed. The results indicated an increase in setting time and a reduction in the fluidity of the mortars as a function of the addition of GD and the best results for the hardened state properties were verified for the cementitious matrices containing a 5% addition. Therefore, it was observed that GD is effective in retarding the setting time, presenting great potential for use in civil construction, without impairing its properties.


Sign in / Sign up

Export Citation Format

Share Document