scholarly journals Liquid deposition modification of nano-ZSM-5 zeolite and catalytic performance in aromatization of Hexene-1

Author(s):  
Yujun Fang ◽  
Xiaofang Su ◽  
Wei Wang ◽  
Wei Wu

The Olefin aromatization is an important method for the upgrade of catalytic cracking (FCC) gasoline and production of fuel oil with high octane number. The nano-ZSM-5 zeolite was synthesized via a seed-induced method, a series of modified nano-ZSM-5 zeolite samples with different Ga deposition amount were prepared by Ga liquid deposition method. The XRD, N2 physical adsorption, SEM, TEM, XPS, H2-TPR and Py-IR measurements were used to characterize the morphology, textural properties and acidity of the modified ZSM-5 zeolites. The catalytic performance of the Hexene-1 aromatization was evaluated on a fixed-bed microreactor. The effects of Ga modification on the physicochemical and catalytic performance of nano-ZSM-5 zeolites were investigated. The Ga species in the modified nano-ZSM-5 zeolites mainly exist as the form of Ga2O3 and GaO+, which provide strong Lewis acid sites. The aromatics selectivity over Ga modified nano-ZSM-5 zeolite in the Hexene-1 aromatization was significantly increased, which could be attributed to the improvement of the dehydrogenation activity. The selectivity for aromatics over the Ga4.2/NZ5 catalyst with suitable Ga deposition amount reached 55.4%.

2014 ◽  
Vol 881-883 ◽  
pp. 271-278
Author(s):  
Bin Liu ◽  
An Jie Wang ◽  
Chen Guang Liu

The reactivity of olefins and S-compounds and their distributions in different catalyst-bed lengths were experimentally evaluated with a FCC gasoline in a high-pressure fixed-bed continuous flow pilot unit over the CoMoS/γ-Al2O3 catalyst. The evaluation results demonstrated that the increased steric hindrances around the double bond (C=C) and that to the thiophene molecules could suppress the hydrogenation of olefins and hydrodesulfurization (HDS) of S-compounds, respectively. Meanwhile, the reaction temperatures could influence the acidic property of the CoMoS active phase confirmed by FT-IR analysis, and thus induced the different reactions. It was found that the isomerization of terminal olefins to internal olefins was promoted by the Brønsted acid sites (-SH) at low temperatures, as well as the skeletal isomerization by the strong Lewis acid sites occurred to a minor extent at high temperatures. Besides, the distributions of olefins and S-compounds in different catalyst-bed lengths showed that the removal of S-compounds reached 80% of its maximum conversion at the first 40% of the reactor length, however, the saturation of olefins increased linearly as the reactor length increased. Therefore, a new catalyst-loading method was developed, i.e., the upper 40% of the reactor length filling with catalyst of high HDS activity and the bottom 60% with catalyst of low olefin saturation activity, respectively. The evaluation results showed that the graded catalyst loading process showed higher selectivity in HDS of FCC gasoline.


2014 ◽  
Vol 13 (1) ◽  
Author(s):  
György Onyestyák ◽  
Szabolcs Harnos ◽  
Cecília Andrea Badari ◽  
Eszter Drotár ◽  
Szilvia Klébert ◽  
...  

AbstractConsecutive hydroconversion of acetic acid (AA) to ethanol was compared over monometallic and novel bimetallic (containing In as guest metal) catalysts on alumina and silica supports (inter alia highly ordered SBA-15) of different porosity and pore structure. The transformation was studied in a fixed bed, flow-through reactor in the temperature range of 220–380°C using hydrogen flow at 21 bar total pressure. AA hydroconversion activity of Cu and Pt catalysts and the yield of selectively produced alcohol were increased drastically by applying SBA-15 as highly ordered, mesoporous silica support instead of alumina. The most active nickel catalysts do not allow the selective addition of hydrogen to carbon-oxygen bonds independently of supports producing mainly CH4; however, indium doping can completely eliminate the hydrodecarbonylation activity as found in earlier studies. The textural properties of studied silica supports of various textures such as SBA-15, CAB-O-SIL, and Grace Sylobead have a profound impact on the catalytic performance of Ni and Ni2In particles.


2017 ◽  
Vol 380 ◽  
pp. 151-160 ◽  
Author(s):  
Sara Faiz Hanna Tasfy ◽  
Noor Asmawati Mohd Zabidi ◽  
Maizatul Shima Shaharun ◽  
Duvvria Subbarao ◽  
Ahmed Elbagir

Utilization of CO2 as a carbon source to produce valuable chemicals is one of the important ways to reduce the global warming caused by increasing CO2 in the atmosphere. Supported metal catalysts are crucial to produce clean and renewable fuels and chemicals from the stable CO2 molecules. The catalytic conversion of CO2 into methanol is recently under increased scrutiny as an opportunity to be used as a low-cost carbon source. Therefore, a series of the bimetallic Cu/ZnO-based catalyst supported by SBA-15 were synthesized via an impregnation technique with different total metal loading and tested in the catalytic hydrogenation of CO2 to methanol. The morphological and textural properties of the synthesized catalysts were determined by transmission electron microscopy (TEM), temperature programmed desorption, reduction, oxidation and pulse chemisorption (TPDRO), and N2-adsorption. The CO2 hydrogenation reaction was performed in a microactivity fixed-bed system at 250oC, 2.25 MPa, and H2/CO2 ratio of 3. Experimental results showed that the catalytic structure and performance were strongly affected by the loading of the active site. Where, the catalytic activity, the methanol selectivity as well as the space-time yield increased with increasing the metal loading until it reaches the maximum values at a metal loading of 15 wt% while further addition of metal inhibits the catalytic performance. The higher catalytic activity of 14% and methanol selectivity of 92% was obtained over a Cu/ZnO-SBA-15 catalyst with a total bimetallic loading of 15 wt%. The excellent performance of 15 wt% Cu/ZnO-SBA-15 catalyst is attributed to the presence of well dispersed active sites with small particle size, higher Cu surface area, and lower catalytic reducibility.


2014 ◽  
Vol 962-965 ◽  
pp. 751-754 ◽  
Author(s):  
Wang Feng ◽  
Bai Ting ◽  
Duan Chao ◽  
Wen Ting Qu ◽  
Xi Ling Liu ◽  
...  

The catalytic performance on HZSM-5/SAPO-34 catalyst in ethanol to propylene was tested in continuous-flow fixed-bed reactor. Coke on HZSM-5/SAPO-34 catalyst for ethanol to propylene was studied by O2-TPO, N2isothermal adsorption–desorption and NH3-TPD.The result showed that the strong and medium acid sites were the active centers of coke deposition; Coke mainly deposited in mesoporous and some coke blocked microporous orifice; In the initial stage of reaction, the high yield of propylene may be benefited from coke deposition, which adjusted the acidity and structure of HZSM-5/SAPO-34.


Author(s):  
Emre Kilic ◽  
Selahattin Yilmaz

H-ZSM5 and H-Ferrierite acidities were modified by chemical liquid deposition using tetraethylorthosilicate (TEOS), silicontetratchloride (SiCl4) and triaminopropyltriethoxysilane (3-APTES). All depositions were carried out at room temperature for deposition times of 0.5 and 1 h. Reaction tests were performed in a tubular quartz fixed bed reactor at 375°C for weight hour space velocities of 22 h-1. Surface area and pore volume of the catalysts were decreased upon modifications. The least modification of acidity was achieved by TEOS. However, SiCl4 and 3-APTES deposition modification strongly decreased the number of Bronsted and Lewis acid sites. As the effect of the modification increased, total acidity of the SiCl4 modified catalyst decreased. The catalysts were tested in isomerization of n-butene. Modification decreased the activity of the catalysts, but improvement in selectivity was observed with TEOS deposition. TEOS deposition increased the selectivity of the catalysts; for synthesized H-ZSM5 from 57.95 to 63.74 percent, for commercial H-ZSM5-C from 26.78 to 32.52 percent, and for H-FER from 63.06 to 81.23 percent. However, modification with SiCl4 and 3-APTES decreased both conversion and selectivity of the parent catalysts.


2012 ◽  
Vol 629 ◽  
pp. 381-385 ◽  
Author(s):  
Jun Hui Li ◽  
Zhong Hua Hu ◽  
Ya Nan Wang ◽  
Hao Xiang ◽  
Zhi Rong Zhu

Methylation of toluene with methanol to synthesize p-Xylene was performed in a fixed-bed reactor. HZSM-5 zeolite as a catalyst was prepared by modification with La2O3. In addition, effect of steam treatment for La2O3-modified HZSM-5 on its catalytic performance was investigated as well. The properties of as-prepared catalysts were characterized by XRD, BET and NH3-TPD. The results indicate that modification with La2O3can narrow the size of HZSM-5 channel effectively. And more than 90% selectivity of p-Xylene is obtained over HZSM-5 with loading of 24% and 30% La2O3. However, above La2O3-modified HZSM-5 with high-selectivity exhibit a poor stability for time on-stream of the methylation reaction. Steam treatment of La2O3-modified HZSM-5 can improve its stability and shape selectivity, decreasing by-products. These effects can be attributed to distortion & narrowing of HZSM-5 channel and reduction of HZSM-5 strong Bronsted acid sites during steam treatment. As a result, the excellent catalytic performance is obtained over 24.0% La2O3-modified HZSM-5 by steam treatment at 773 K for 1.0 h, being 23% conversion of toluene, 93% selectivity of p-Xylene during time on-stream.


2011 ◽  
Vol 287-290 ◽  
pp. 2110-2115
Author(s):  
Gang Li Zhu ◽  
Tao Chen ◽  
Xue Dong Jiang ◽  
Hai Liang Zhang ◽  
Bo Lun Yang

Dehydrogenation process of organic chemical hydrides was improved by modifying the catalyst of nickel-activated carbon (Ni/AC) with lanthanum (La). The catalysts were prepared in impregnation method with different amounts of La and Ni. The textural properties and morphology of catalyst were analyzed by nitrogen adsorption and transmission electron microscope equipped with energy dispersive spectrometer respectively. The effects such as metal content and granule size on the dehydrogenation of cyclohexane were investigated in fixed bed reactor. The results show that the metallic active components can be well dispersed on the support, and the elements analysis indicates the metal species tend to assemble on the surface layer rather than being distributed equally in the whole catalyst. The La modified catalyst LaNi/AC exhibited superior catalytic performance to Ni/AC and the conversion was 45% for LaNi/AC catalyst at 673K, while only 34 % for Ni/AC under the same conditions.


Nanomaterials ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1452
Author(s):  
Min Seong Lee ◽  
Sun-I Kim ◽  
Myeung-jin Lee ◽  
Bora Ye ◽  
Taehyo Kim ◽  
...  

In this study, we synthesized V2O5-WO3/TiO2 catalysts with different crystallinities via one-sided and isotropic heating methods. We then investigated the effects of the catalysts’ crystallinity on their acidity, surface species, and catalytic performance through various analysis techniques and a fixed-bed reactor experiment. The isotropic heating method produced crystalline V2O5 and WO3, increasing the availability of both Brønsted and Lewis acid sites, while the one-sided method produced amorphous V2O5 and WO3. The crystalline structure of the two species significantly enhanced NO2 formation, causing more rapid selective catalytic reduction (SCR) reactions and greater catalyst reducibility for NOX decomposition. This improved NOX removal efficiency and N2 selectivity for a wider temperature range of 200 °C–450 °C. Additionally, the synthesized, crystalline catalysts exhibited good resistance to SO2, which is common in industrial flue gases. Through the results reported herein, this study may contribute to future studies on SCR catalysts and other catalyst systems.


2020 ◽  
Vol 8 ◽  
Author(s):  
Qiang Wei ◽  
Pengfei Zhang ◽  
Xiaodong Liu ◽  
Wenbin Huang ◽  
Xiayun Fan ◽  
...  

Ni-modified ZSM-5 zeolites with different nickel contents were successfully prepared by the in situ synthesis method and the impregnation method. The synthesized samples were characterized by XRD, SEM, N2 adsorption–desorption isothermals, and Py-FTIR. The characterization results show that both the textural properties and crystallization of Ni-modified ZSM-5 zeolites were preserved well, and their acidic properties can be modulated after nickel modification. The corresponding NiMo catalysts supported on Ni-modified ZSM-5 zeolites were prepared by the incipient wetness co-impregnation method, and their catalytic performances were evaluated in n-octane hydroconversion. Compared to the those modified by the in situ synthesis method, ZSM-5 zeolite-supported catalysts modified by the impregnation method exhibit higher stability and higher isomerization selectivity. This is due to the synergistic effect between Brønsted acid sites and Lewis acid sites on the Ni-modified ZSM-5 zeolites, especially for the NiMo/1Ni-Z5 catalyst.


Molecules ◽  
2019 ◽  
Vol 24 (19) ◽  
pp. 3462 ◽  
Author(s):  
Yiren Wang ◽  
Yang Chang ◽  
Min Liu ◽  
Anfeng Zhang ◽  
Xinwen Guo

A general strategy for preparing shaped toluene methylation catalysts with enhanced para-selectivity and stability is developed by extruding ZSM-5 zeolite with attapulgite as a binder. The novel attapulgite/ZSM-5 extrudate exhibited significantly higher para-selectivity and stability in comparison to the conventional alumina-bound ZSM-5 extrudate. The catalyst samples have been characterized by in situ X-ray diffraction, scanning electron microscope (SEM), NH3 temperature programmed desorption (TPD), thermogravimetric analysis (TGA) as well as n-hexane/cyclohexane physical adsorption. The enhanced catalytic performance of attapulgite/ZSM-5 extrudate is correlated with the in-situ modification of acid sites in the catalyst by mobile alkaline species, which is introduced via extrusion with attapulgite. Moreover, a higher para-selectivity was obtained over attapulgite-bound modified ZSM-5 extrudate. Such facile and universal strategy of extruding ZSM-5 catalysts with attapulgite as binder could pave a way for preparation of shaped zeolite-base catalyst with enhanced catalytic performance.


Sign in / Sign up

Export Citation Format

Share Document